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Compact Heat Exchanger Benefits
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Higher surface/volume ratio and small transport distances
provide higher effectiveness than conventional designs.
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Scaling Microchannel Designs

Plate-Shell Design Block
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° Design Options: PCHE, FPHE, etc.

e Plate-shell: microchannel plate/macrochannel shell
 “Block” design




Ceramatec Approach

Plate-Shell Design
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 Individual plates as repeat units in modular stacks

reduce net cost:

« Downstream yield of full component
Simpler layup

Simpler binder removal

Simpler manifolds




Laminated Object Manufacturing

2 Slip 3 Tape
preparation fabrication

1 powder

processing

1 - Control surface area for slip properties and sintering.
2 - Disperse materials for uniform tape properties (featuring and lamination), defect

elimination and controlled sintering shrinkage.
3 - Dry tape uniformly for uniform thickness, minimal drying stress, without defects.
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Laminated Object Manufacturing

4 Tape °>  Tape
featuring lamination
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4 — Optimise power and speed to minimise heat affected zone, maximize throughput,
and obtain accurate channel dimensions.

4 — Laser cut or punch depending on layer thickness and channel dimensions.

5 — Complete lamination for structural integrity without deforming internal features.




Laminated Object Manufacturing

6 Sintering I 7 Stack Assembly I

6 — Controlled thermal cycle/environment for binder burnout and densification to make
leak tight components while maintaining flatness without creating defects.

6 — Complex designs require co-sintering dissimilar materials and porous and dense
layers in the same component.

7 — Requires robust ceramic-ceramic joining.
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Microchannel Heat Exchanger
Design Flexibility




Microchannel Heat Exchangers
Performance Metrics

Performance Metric Value
Thermal Duty 1 MW (heat)
Hydraulic Diameter - Feed 6361
Hydraulic Diameter - Exhaust 1684

Temperature Span (Inlet to Inlet) 450C to 950C
Volume 1.0 m’

Log Mean Delta Temperature 25C

Overall Heat Transfer Coefficient 145 W/m“C
Area Density (modular stack) 310 m“/m°

e Scaleable from kW to MW Calculated values
« Estimated ceramic heat exchanger cost: $100-200 kW,

* Reference case: gas separation modules: 100 $/kW
(independently verified by 3" party for DOE).




Microchannel Size Selection

Effectiveness X
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Plate Design

=

* Plate Shell design
* Flow distribution to channels
* Flow distribution across plates
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Plate Fabrication and Testing

Individual Plates




Microchannel Heat Exchanger
Test Results

Individual Plates

Flow Rate Regimes: Flow rate [slpm) of air through Heat Exchanger Flate (attendant pressure drop is noted on the right as)
5 slgm for ramp up (5432, 1 slpr for rarmp dewn

J0
g A D T s > 14

12

10

Awerage Furnace Temperature *C B

Temperature ("C)
35

=——Hi{ Flate Inlat Gas (air) Temparatura “C

i
1
i
I
I
i
I
i
|
I
I
i
I
! 6
|

|

——H2 Plate Duthst Gas [air) Temperature *C

=== HX Flate Internal Pressere Drop During Testing (psi) L]

=,

o
a 100 200 300 400 500 a00 To0 EDO [00 1000
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* High pressure drop

* Approach temperature > 100C for >5 slpm

« Plate to be cross sectioned and characterised

» Additional plates to be tested

HX Plate Internal Pressure Drop (psi)
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Microchannel Heat Exchanger
Test Apparatus

3-10 plate stacks
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Microchannel Heat Exchanger
Test Apparatus

3-10 plate stacks

Measurements

Plate Temp in

Plate Temp Out
Channel Temp in
Channel Temp Out
Channel Pressure In
Channel Pressure Out




Microchannel Heat Exchanger
Test Results
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Preliminary results indicate good performance:
low approach temperature — 60C
Reasonable pressure drop — 3900 kPa




Status: UTRC Crosscutting
Technology Award

Block Design

20-30 individual tape layers.

Featured, laminated, and sintered as one unit.
Successfully fabricated on second attempt.
R&D cost.
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Future Work

Support mitigation of key technical risks, especially
lifetime:
Continue study and validation of design tradeoffs
between design for manufacturing and performance.
Materials testing: Oregon State U., U. Wisconsin.
Assembly of 5-10 kW stacks and n * 1000 h testing.
Verify reliability of integration with balance of plant,
especially hot gas manifolds.
Verification of viable manufacturing costs for robust
and scalable processes.




Summary
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Thank you. Questions?
Acknowledgement: DOE Office of Fossil Energy, Office of Crosscutting
Technology, DE-FE-0024077.




SIC Heat Exchanger:

Production
26 kWe p-turbine cycle
— “Optimized Design”
— 10,000 units/year

Economics

e Cost Model - CKGP / .
Ceramatec

Extension / Modifications
— Capitalization (new plant)
— Process Capacity

Fixed / Variable Costs

— Labor (DL & IL)

» Efficiency / Rates

— Materials

» SIiC (435 Tonnelyr)

e Consumables

Item Description Amount

Direct Labor Labor for value added fabrication processes (80 man years) | $2,093,077
Indirect Labor Labor for management and QC in fabrication (68 man years) | $4,127,548
Benefits For both direct and indirect labor (30% of labor) $1,866,188
Overhead Facilities, maintenance and utilities (20% of labor) $1,617,363

Sub-total | Labor related variable costs $9,704,176
Direct Materials Material expenses directly used in product (SiC powder) $5,216,013
Consumables Materials used to produce product (mylar, solvents etc) $3,662,557
Heat exchanger package Finishing, packaging, insulating heat exchanger ($500 each) | $5,000,000

Sub-total | Materials related fixed costs $13,878,570
Capital Depreciation 10 year straight-line (equipment, facilities) $10,879,826

Sub-total | Annual expenses $34,462,572
Management Corporate G&A (20% of expenses) $6,892,514

Sub-total | Cost of production 41,355,086
Profit 15% of production costs $6,203,263

Total | Revenue $47,558,349
Number of Units 10,000 per year
Price per Unit Total/Number of Units (26 kWe Micro-turbine) /~  $4,755.83
6 K\\ ele Micro bine S

Price per kWe




Cost Breakdown

1-200 kW, /unit
1,000 units/yr

Costs: Materials & Labor

2%

3%

B Wafer Labor

m Wafer Materials
m Stack Labor

M Stack Materials
® Module Labor

m Module Materials
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Application: microturbines

Exhaust Dutlet

« Recuperator Inlet Temp:

Recuparatar

— Metal — 600C
— Ceramic — 800C Sty Gombustion
« Turbineinlet temperature: Gt\\\ S
— Metal —900C Air Beorings — Seseinel
— Ceramic —1100C Rt
« Efficiency |

— Non-recuperated: 20%
— Metal, Recuperated: 50%
— Ceramic, Recuperated: 60%

 Fuel savings:

Air Bearings

Recuparator
Housing

Air Bearings
B $ Cutaway graphic of a C200 Turbine
3 kg Capstone Micro Turbine
— emissions
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System Modeling & Design
Colorado School of Mines

Summary of recuperator design requirements

derived from system modeling effort <)

Turbine Model and Net Power (KW) C30 Cos C200
Pressure Drop (kPa) 10 7.5 7.5
Air Side Mass Flow Rate (kg's) 0.2991 0.498 1.348
Exhaust Side Mass Flow Rate (kg/s) | 0.3051 0.5027 1.36
Air Inlet (SP 2) Temp (C) 149.4 168.1 190.6
Air Outlet (SP 3) Temp (C) 5894 571.6 504.7
Exhaust Inlet (SP 5) Temp (C) 694.4 690.6 666.7
Exhaust Outlet (SP 6)Temp (C) 275.3 309.3 280.7
Recuperator Heat Transfer (kW) 140.9 215.2 585.8
Recuperator Effectiveness 0.799  0.7632 0.84217




Microchannel Size

Single Micro-Channel Fluent Study

m Investigating effects of varying channel
dimensions of a single channel on
pressure drop. effectiveness .etc.

m  Channel width 0.6-2 mm

m  Channel height 0.4 — 0.8 mm

m  Rib width 0.4 mm

m “External” fluid gap height 0.4 — 1 mm

Length of 150 mm (full length) _ i
m  Boundary conditions SolidWorks drawing representing the single channel geiumetr}-'.
— Channel mass flowrate set based on Re — 400, 600, 800

— External mass flowrate set proportional to channel flow rate, based on proportion
from EES system model (difference due to fuel addition)

— T ch in=463 K. T ext in=1939 K (from EES 200 kW turbine system model)
— P out =0 Pa gauge




Component Scale-up

Scale-up Numbering-up

Modular Stack

Test Coupon

Full-Size Wafer
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Compact vs Conventional Design

Reliability

P =1—exp(—aiom] [l otxy.2)av

Where:

o(x,y,z) = (P) + o(AT)

6, = Weibull Material Scale Parameter
m = Weibull Modulus

Stress

Metrics

Tubular Designs

Planar Designs
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Microchannel Heat Exchanger

Fabrication

 Pressure Laminated Integrated Structure
Manufacturing (PLIS)

Prepare powders
(with binders)

Y

Dry-press plates to
form layers

Y

Green machining

(if necessary) I
W Arrange and laminate
S == _~— green layers

v

Sinter the

multi-layer stack
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Plate Design

=

* Plate Shell design
* Flow distribution to channels
* Flow distribution across plates

' CERAMATEC




Plate Design

AN
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Pressure (Pa) Pressure (psi)

e Revision to manifold to improve flow distribution
e Final revision in process.
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Microchannel Heat Exchanger
_Test Apparatus

Preheater and Test chamber are placed
inside furnace
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Microchannel Heat Exchanger
Test Apparatus

3-10 plate stacks

| ioe

Gas outlet
Ll (heated air)

N N T
L ey

Heat exchanger stack inserted into test chamber to make flow duct for plate-

side gas.
Microchannel gas flows into and out of manifolds.
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