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Introduction

* Dry air-cooling has become increasingly important for
power generation cycles, especially those located in arid
regions with restricted water resources

« Compare feasibility of dry air-cooling with S-CO2
precooler to traditional steam condenser

 Complete cycle and heat exchanger models allow for a
proper comparison

 Economic analysis developed to predict the cost of the
heat rejection unit based on material costs and actual
guoted heat exchangers
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Power Generation Cycles

« S-CO2 Brayton Cycle vs. Steam Rankine Cycle
e Single source of regeneration

e Pressure drop only considered in the heat
rejection units

e Cycles are defined in order to determine the
required performance for the heat rejection
units
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Supercritical Carbon Dioxide Brayton Cycle
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Tein Compressor Inlet Temperature
P.in Compressor Inlet Pressure

Ne Compressor Isentropic Efficiency
P out Compressor Outlet Pressure
UAyec Recuperator Conductance
Ttin Turbine Inlet Temperature

N¢ Turbine Isentropic Efficiency
Parop Precooler Pressure Drop
Wean Required Fan Power
Wer Total Net Power




Steam Rankine Cycle
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Air-Cooled Heat Exchanger Model

e S-CO2 Precooler vs. Steam Condenser

 Modeled as finned tube heat exchanger using
Engineering Equation Solver (EES) software

« Equate physical size of cooling unit to required
performance from cycle model

 Heat exchanger is directly integrated with cycle models

* Investigate the effect of size of cooling unit and the
required fan power on the efficiency of the cycles and
the cost of these units
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Modeling Methodology
Cyce Model
Inputs
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Economic Considerations

« Analysis includes earnings from generating electricity,
cost of providing thermal energy to the cycle, and capital
cost of the cooling heat exchanger

o Calculate life cycle earnings from P1-P2 methodology

 Heat exchanger costing model created from predicting
overall cost from tubing and fin material costs

« Estimated cost of heat exchanger is calculated using a
power law model developed from obtaining two quotes
for air-cooled heat exchangers
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Brayton Cycle

Working Fluid Supercritical Carbon Dioxide Steam
|_|fe CyCIe Earn | ngS Compact Heat Exchanger Finned circular tubes, surface CF-7.34
. . . Cycle Inputs
Optimization Total Net Power 10 MW
Hot Temperature 700° C
Parameters High Side Pressure 25 MPa 22 MPa
Cold Temperature Variable
Low Side Pressure 8 MPa Saturation
fe_tubes sCT-734 Turbine Efficiency 85%
Compressor/Pump Efficiency 85% 60%
IV, mm | RECUperator Conductance 1500 kW/K -
23.37mm AALLALRA LA LMY Extraction Pressure - 1.9 MPa
T Cooler Pressure Dro 2%
’@ 3.505mm mzm Air Side Inputs :
20.32mm
Ambient Temperature 30°C
Ambient Pressure 1 atm
Fan Power Optimized (LCE)
Fan Efficiency 50%
Pressure Drop 200 Pa
Economic Parameters
Number of Years for Analysis 5
Fuel Inflation Rate 2%
Market Discount Rate 3.25%
Cost of Electricity 0.05 $/kW-hr
Cost of Thermal Energy 0.465 $/therm

Rankine Cycle
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Life Cycle Earnings
Optimization
Fan Power

Life Cycle Earnings [$]
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Life Cycle Earnings
Optimization
Results

Life Cycle Earnings [$]

HX Capltal Cost [$]

x 108

52,

38—
35

5[
48[
46|
44/
42[

af

Braytén Cyclle |
(Compressor Inlet Pressure in MPa) |
—————— Rankine Cycle

(75) (g)

40 45 50 95 60

x 108

0.6

05/
04/

03/

02/

01!l

35

40 45 50 55 60
Condensing/Compressor Inlet Temperature [C]

UNIVERSITY OF WISCONSIN-MADISON

(ﬁ?}c Il f Engi '
ollege of Engineering
A\ ¥4

<y




Summary and Conclusions

* Cycle models for S-CO2 Brayton cycle and steam
Rankine cycle

* Dry air-cooling crossflow heat exchanger models for
S-CO2 precooler and steam condenser

 Economic comparison and life cycle earnings analysis

o S-CO2 Brayton cycle is superior to the steam Rankine
cycle for use with dry air-cooling in terms of both cycle
efficiency and the physical size of the cooling heat
exchanger
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Thanks!

QUESTIONS?

N\ ..
\\W’}College of Engineering
UNIVERSITY OF WISCONSIN-MADISON

\W/



References

- Dobson, M. K., and Chato, J. C., 'Condensation in Smooth Horizontal Tubes,' ASME J. Heat
Transfer, 120, pp. 193-213, (1998).

- Duffie, J.A., & Beckman, W.A., Solar Engineering of Thermal Processes, 4th ed., Wiley, New York,
(2013).

- Dyreby, J., Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression,
Dissertation, University of Wisconsin-Madison, (2014).

- Gnielinski, V., Equations for calculating heat transfer in single tube rows and banks of tubes in
transverse flow, International Journal of Chemical Engineering, Vol. 19, pp. 380-390, (1979).

- Hruska, P., M.S. Thesis, University of Wisconsin-Madison, (2016).

- Kays, W.M., & London, A.L., Compact heat exchangers, 3rd ed., McGraw Hill, New York, (1984).
- Klein, S.A., & Nellis, G., Thermodynamics, Cambridge University Press, (2009).

- Klein, S.A., Engineering Equation Solver, F-Chart Software, http://fchart.com, (2015).

- M.B. Ould Didi, N. Kattan, J.R. Thome, Prediction of Two-Phase Pressure Gradients of Refrigerants
in Horizontal Tubes, International Journal of Refrgieration, Vol 25, pp. 935-947, (2002).

- Nellis, G., & Klein, S.A., Heat Transfer, Cambridge University Press, (2009).
- OnlineMetals, access online: http://www.onlinemetals.com, (2015).

- Zigrang, D.J. & Sylvester, N.D., "Explicit approximations to the solution of Colebrook's friction factor
equation,” AIChE Journal, Vol. 28, pp. 514-515, (1982).

UNIVERSITY OF WISCONSIN-MADISON

mc Il f Engi [
ollege of Engineering
A\ ¥4

<y



BN
Heat Exchanger Cost Model
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*Material costing from OnlineMetals (2015)
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