A Comparative Study of Heat Rejection Systems for sCO₂ Power Cycles

Timothy J. Held, Jason Miller and David J. Buckmaster

Heat rejection systems

 Common to all closed-loop cycles, sCO₂ systems need to reject residual heat

Enthalpy (kJ/kg)

Heat rejection technology

- Air cooled
 - Fin-fan cooler
 - Low air-side dP (< 2"wc)</p>
 - Aux loads = fan drives
- Water-cooled
 - Cooling tower (forced draft)
 - Intermediate water-loop required for PCHE CO₂-water HX
 - Aux loads = fan drives + pumps

 Hybrid solutions exist (WSAC, ACC with fogging) – not considered for this paper

Why you should not use direct CT water feed to your PCHE

- a) The manufacturer advises against it
- b) Very small change in water conductivity resulted in significant PCHE performance loss

Condenser performance & nomenclature

70 CO₂ inlet 60 Coolant CO2 50 Temperature (°C) 40 Range _Approach 30 Coolant inlet 20 rQtot $\frac{dQ}{T_{CO_2} - T_{coolant}}$ UA =10 0 0% 20% 40% 60% 80% 100% Q/Q_{tot}

Cycle performance

Heat exchanger sizing

Cost generally proportional to UA Design value = 1500 kW/°C (both water & air)

Cooling tower sizing

Cost function of design approach temperature 3°C regarded as a practical minimum by CT suppliers, used for this study

Local climate impacts

Hourly observations from 2014 converted to CDF format T_{wb} affects water (evaporative) cooling, T_{db} affects air cooling

Cooling tower performance as f(T_{ambient})

20°C selected as design point

Demin water loop adds another 3°C to approach temperature As Twb approaches 0°C, water T increases to avoid freezing

Echogen Power Systems

Coolant temperature distribution

Coolant temperature CDF calculated as function of wet/dry bulb temperature CDFs

Cycle performance over 1-year period

Coolant CDFs convolved with Power = f(T_{coolant}) to calculated CDF of net power Results integrated to yield annualized average power

Echogen Power Systems

Net power output (non-condensing cycle)

Annualized average

11,000 11,000 10,500 10.500 10,000 10,000 Net Power (kWe) Net Power (kWe) 9,500 9,500 9,000 9,000 8,500 8,500 8,000 8,000 7,500 7,500 7,000 7,000 Akron Houston Phoenix Akron Houston Phoenix WCC ACC ACC VCC 2

ACC outperforms on average Hot-day performance falloff ~ 2-4% for non-arid climates

G

99% hot day

Auxiliary load comparison

Lower cooling tower fan loads largely offset by increased pump loads

Footprint comparison

Cooling tower footprint smaller than ACC, does not include space for pumps, water treatment, etc.

Capital cost comparison

	 WCC	 ACC
Cooling tower/ACC	\$ 143,000	\$ 695,000
Water treatment	\$ 20,000	
CT Pumps	\$ 44,000	
CT/ACC Piping	\$ 41,000	\$ 108,000
PFHE	\$ 83,000	
PFHE Pumps	\$ 46,000	
PFHE Piping	\$ 16,000	
Filters	\$ 5,000	
WCC PCHE	\$ 300,000	
Total eqpt	\$ 698,000	\$ 803,000
Installation	\$ 419,000	\$ 482,000
Total	\$ 1,117,000	\$ 1,285,000

ACC slightly (15%) higher

O&M cost comparison (annual)

	WCC	ACC
Water consumption	\$ 156,000	
Water disposal	\$ 57,000	
Water treatment	\$ 25,000	
Chemical replacement	\$ 65,000	
Pump maintenance	\$ 24,000	
Fan maintenance	\$ 7,500	\$ 30,000
Maintenance cost/yr	\$ 334,500	\$ 30,000
\$/kWh	\$ 0.0042	\$ 0.0004

Significantly lower O&M costs, largely driven by elimination of water supply, treatment and disposal costs Reduced O&M pays back increased capex of ACC in << 1 year

Other reasons to prefer ACC

Cooling water filter cleaning is ... unpleasant

Other reasons to prefer ACC

Cold-weather operation is even less pleasant

Other reasons to prefer ACC

"Mimivirus" – world's largest virus, discovered in a UK cooling tower Legionella bacterium – often found in cooling towers. Infects 10,000-18,000 people per year in the US alone

Cooling towers are excellent industrial-scale Petri dishes

Conclusions

G

- Water cooling advantages
 - Better performance on hot days, especially in arid climates
 - Smaller footprint
- Air cooling advantages
 - Better annualized average power output except in arid climates (where water cooling is impractical anyway)
 - Lower O&M costs
 - Simpler operation
 - Near zero water consumption for sCO₂ power cycles
- Costs and auxiliary loads are similar

Air cooling nearly always the better choice

Backup slides

C

Cycle / cost modeling

- Optimization process defines cycle with minimum cost for given power output
- Multiple solutions generates curves of cost vs power
- Allows selection of optimal cycle architecture

Held, T.J., 2015. Supercritical CO₂
Cycles for Gas Turbine
Combined Cycle Power Plants.
Power Gen International.

Echogen Power Systems

sCO₂ vs steam

- Normalized to steam power & cost from GT-Pro, "power-optimized" solutions ("cost-optimized" point shown for reference)
- Same exhaust and boundary conditions used for sCO₂
- 10-20% lower cost for same power
- 7-14% higher power for same cost