Pathways to cost competitive CSP via $sc-CO_2$ power cycles

Supercritical CO₂ Power Cycles Symposium; March 2016 <u>Matthew Bauer</u>, Rajgopal Vijaykumar, Mark Lausten, Joe Stekli

Talk Objectives

- Brief CSP History
- Present technoeconomic metrics aligned with cost competitive CSP
 - What do these metrics mean for the power cycle?
 - What do these metrics mean for the rest of a CSP plant?
- Provide overview of technology development for third generation CSP
 - Focus on heat transfer fluid (HTF) specific pathways

CSP:A BriefTechnology History

Ragheb, M. "Solar thermal power and energy storage historical perspective." *University of Illinois at Urbana-Champaign* (2011).

Aerial View of Solana Power Block and Thermal Energy Storage

CSP:A BriefTechnology History

- From steam heat generation to power generation
- Collector/Receiver options have expanded

- Storage has been added
- Heat transfer fluid has evolved
- Power cycle: Rankine

Images: 1913 Maadi Egypt station, Solana, Crescent Dunes, Man Diesal & Turbo steam turbine

SunShot CSP Cost Objective

SunShot Department of Energy commercial deployments

RECEIVER

are notable challenges

What Temperature makes sense for CSP?

Increasing cycle efficiency requires higher temperatures

Increasing temperature causes greater radiative losses

Third Generation CSP: 720 C

- Tradeoff between Carnot efficiency and radiation
- Price targets can be achieved near 700 C
- HTF, TES, Receiver, and material transport must be redesigned for this temperature regime
- Increased power block efficiency decreases size of the CSP plant

First Generation:

Thermal or organic HTF operating at 390 C, trough dominate; Steam Rankine Cycle

Second Generation: Solar Salt HTF operating at 565 C; often doubles as TESM; towers and troughs; Steam Rankine Cycle

Third Generation:

To be determined HTF and TESM; demands increased efficiency power cycle

Cost Metric

Clifford K Ho, Matthew Carlson, Pardeep Garg, and Pramod Kumar; Cost and Performance Tradeoffs of Alternative Solar-Driven S-CO2 Brayton Cycle Configurations; ASME 2015 9th International Conference on Energy Sustainability

	SCBC [20]		RCBC [20]	CCBC [21]	CBI[22]
Net Power (MWe)	100	100	100	133	100
Efficiency (%)	16	46	46	28	51
$T_{max}(C)$	700	7 00	700	600	700
$P_{max}(MPa)$	20	2 0	2 0	27 .6	15
$P_{min}(MPa)$	6.4	8.0	7.3	8.5	2.6
$P_{int}(MPa)$	N/A	N/A	N/A	N/A	5.0
$T_{comp,min}(C)$	55	55	55	37	35
η _{comp} (%)	<u>90</u>	<u>90</u>	<u>90</u>	85	90
η _{exp} (%)	<u>90</u>	90	<u>90</u>	<u>90</u>	90
f _{rec} or f _{cascaded} (%)	N/A	N/A	11.5	47.5	40
$\Delta T_{HTF,min}(C)$	25	25	25	25	25
$T_{air,min}(C)$	30	30	30	30	30
$\Delta T_{HTR}(C)$	540	172	170	518	159
Ċ _{HTF} (MW/K)	1.39	1.53	1.27	0.919	1.21
ġ _{HTF} (MWth)	6 23	22 0	216	449	19 2
Heater (\$/kWe)	381	212	322	370	292
Recuperation (\$/kWe)	0.00	243	244	160	259
Cooling (\$/kWe)	545	85	154	763	350
Compression (\$/kWe)	423	230	147	110	74
Expansion (\$/kWe)	136	128	135	180	120
Total (\$/kWe)	1,485	898	1,002	1,583	1,095

Turbomachinery Technology Gaps

- Rotordyanamic considerations
 - Real gas effects
 - Bearing and seal coefficients at high pressure w/ real gas effects
 - Coupling mass for small rotors
- Structural dynamics
 - Blade-wake interactions heightened by high fluid density
 - Shift in structural response with gas density
- Materials
 - Impact of high inlet temperatures and pressures on materials selection
 - Stress associated with high rotational speeds

- Off design operations
 - Surge and stall maps
 - Operation near critical point
- Sub-components
 - Dry gas seals and leakage rates
 - Incorporation of real gas effects in prediction codes
 - Bearings
 - Limited high DN bearings
 - Selection between oil, magnetic, and gas bearings for sealed applications
 - Non-metallic seals
 - Explosive decompression of polymer/elastomeric materials

Fundamental designs and component technologies differ for machines under 10 MW

SunShot sc-CO₂ Cycle Portfolio Highlights

Technology development to support third generation CSP

		Receiver Cost < \$150/kW	Material & Transport	Thermal Storage	HTF to sc-CO ₂ Heat Exchanger	
Collector Field		m Thermal Eff. > 90% Exit Temp > 720 °C 10,000 cycle lifetime	Cost < \$1/kg Operable range from 250 ℃ to 800 ℃	Cost < \$15/kWh _{th} 99% energetic efficiency 95% exergetic efficiency		Super Critical CO2 Brayton
 Cost < \$75/m² Concentration 	Direct sc-CO2	 High pressure fatigue challenges Absorptivity control and thermal loss management 	 Minimize pressure drop Corrosion risk retirement 	 Indirect storage required Cost includes fluid to storage thermal exchange 	Not applicable	Net thermal to electric efficiency > 50%
ratio > 50						Power cycle system cost
 Operable in 35 mph winds Optical error < 3.0 mrad 	Liquid	 Similarities to prior demonstrations Allowance for corrosive attack required 	 Potentially chloride salt, ideal material not determined Corrosion concerns dominate 	 Direct or indirect storage may be superior 	Challenging to simultaneously handle corrosive attack and high pressure working fluid	< \$900/kW • Dry cooled heat sink at 40°C ambient • Turbing inlent
						temperature
• 30 year lifetime	Falling Particle	 Most challenging to achieve high thermal efficiency 	 Suitable materials readily exist 	Particles likely double as efficient sensible thermal storage	 Possibly greatest challenge Cost and efficiency concerns dominate 	near 720 C

SunShot CSP Receiver Portfolio: Novel Receivers

Direct sCO₂ Pathway

Oregon Statue University Microchannel Receiver Concept

Key Advantages

- Simplifies and reduces plant size
- Comparable steam plants
 commercially operating
- Significant research and design progress made at 650C
 SunShot

Brayton Energy's Integrated Receiver, TES, Power Cycle Concept

Remaining Technology Gaps

- Separate thermal energy storage
- Pressure drop and material survival at the receiver at > 720C
- Corrosion concerns at maximum temperatures

Falling Particle Technology Path

Ho, Clifford K., and Brian D. Iverson. "Review of high-temperature central receiver designs for concentrating solar power." *Renewable and Sustainable Energy Reviews* 29 (2014):835-846.

Key Advantages

- Material survival
- Direct Thermal Energy Storage

Remaining Technology Gaps

- Proving high efficiency heat exchangers "on sun" (Both receiver and HTF to CO₂)
- Material handling

Liquid HTF Pathway

2012 MURI HOT Fluids awards

THE UNIVERSITY LOS ANGELES THE UNIVERSITY BERKELEY YALE UNIVERSITY	OF CALIFORNIA, OF CALIFORNIA,	UCLA O Yale	
PROGRAM:	2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids		
LOCATION:	California; Connecticut		
AWARD AMOUNT:	Up to \$5 million		
PROJECT TERM:	2012–2017		

THE UNIVERSITY OF ARIZONA		THE UNIVERSITY OF ARIZONA.
ARIZONA STATE	JNIVERSITY	ASU
GEORGIA INSTITUTE OF TECHNOLOGY		Georgialnstitute of Technology
PROGRAM:	2012 Multidiscip Research Initiativ Operating Temp	olinary University ve (MURI): High perature (HOT) Fluids
LOCATION:	Arizona; Georgia	a
AWARD AMOUNT:	Up to \$5.5 millio	n
PROJECT TERM:	2012–2017	
HIGH SENSITIVITY PHOTOGETECTOR PHOTOGETECTOR		150°C

- Identify liquids operable from 200-800C
- Thermophysical and cost values aligned with SunShot price goal
- Fluid and container pipping able to survive for 30 year life
- Greatest technical gap:
 Corrosion

U.S. Department of Energy

Liquid HTF Pathway

Solar Reserve: Ceramic Receiver

- Monolithic absorber employing microchannel flow and absorptive coating
- Demonstrate 10,000 cycle survival

Corrosion Investigations: NREL, SRNL

- Rapidly screen and mitigate corrosion in chloride salts contained within superalloys above 700 C
- Develop control practices such as protective coatings and material healing additives

Thermal Energy Storage

Stekli, Joseph, Levi Irwin, and Ranga Pitchumani. "Technical challenges and opportunities for concentrating solar power with thermal energy storage." Journal of Thermal Science and Engineering Applications 5.2 (2013):021011

Pathways to cost competitive CSP via $sc-CO_2$ power cycles

Supercritical CO₂ Power Cycles Symposium; March 2016 <u>Matthew Bauer</u>, Rajgopal Vijaykumar, Mark Lausten, Joe Stekli

