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Cost and Performance Results LABORATORY

: : 42
* Results shown for two different turbine X
inlet temperatures z 40
* 620 °C (similar to ultra-supercritical (USC) 5 38
Rankine cycle conditions) S 36
* 760 °C (approximating advanced ultra- < .,
supercritical (AUSC) Rankine cycle =
conditions) s 32 » -~ 760°C
7 620°C
' - 30 - :
° Compared to plglnts cm ,IQYlng Ba,nklne Rankine Base Intercooled Reheat Reheat+Intercooled
cycles at operating conditions similar to the
corresponding sCO, plants, the sCO, plant 0
offered: <
* Significantly higher plant efficiency S s
~
* Lower COE gm0
. . . og
* Results were consistent with prior T
sensitivity analyses on indirect sCO, cycle = 110
sensitivity to turbine inlet temperature & 6e 0
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 Air-fired PC Boiler Cason A
* Bituminous coal 12 y v
° 990/0 Carbon COﬁVCrSiOfl INFILTRATION Yy 11—>l—13—> BAGHOUSE —15¢D—16—> FGD |—1
* Hydrated lime injected for SO; control - T o
Powdered activated carbon (PAC) for Hg control L soR | omwres \ 2(:
SCR and OFA for NOx control —1_’}2_5,_ 3 A e
Infiltration air 1.7% of feed air to PC boiler FD Fans }r PuLERIZED 2
* Operating conditions for Rankine plants _4_.}5_61_. L |
* Supercritical (SC) Rankine cycle! PA Fans ‘ ‘ — -
(Case B12A: 24.1 MPa/ 593 °C/ 593 °C) . ! i L L TURBINE
* Advanced ultra-supercritical (AUSC) Rankine cycle? s | -
(AUSC Case 5: 34.5 MPa/ 732 °C / 760 °C) BoToN Ast CONDZNSER
* No low temperature flue gas heat recovery cecounren | FEEDWATER | "
* Wet FGD (98% efficiency) for sulfur removal . Bk e D ot it
(Gypsum) s o s e
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Non-capture Indirect sCO, Plant Study N e o

Reference sCO, Process without CO, Capture — Case RhtIC760A LABORATORY

From Oxy-CFB Coal-fired Indirect sCO, Plant,
Case RhtIC760A removes:

* Air Separation Unit (ASU)
* CPU (Carbon Purification Unit) — no CO, capture
* Recycle Flue Gas to CFB

Air-fired-CFB

* Bituminous coal

Stack

* 99% carbon conversion infiation
0 Air — -1 20
* 3.1% excess O, to CI'B ; s FuoGas ‘»?
41—
* In-bed sulfur capture (94%), 140% excess CaCOj, D Fan 15 - B0 pL I
. . . mbient Air 8 10— ain 2
* Infiltration air 2% of feed air to CFB et = ﬁ; ] T Compresser
. PA Fan . Very High Fm
* Recompression sCO, Brayton cycle e Temoerte
* Turbine inlet temperature 760 °C Goal 11> Combustor |y | 4 |t
. Limestone 12— i3 High a4 Lowv Compressor
* High temperature heat recovery from flue gas N o P e P
F

(Economizer)

Low temperature flue gas heat recovery in sCQO, e e rovoern s onended o
pOWer Cycle process streams and equipment are shown.

TUREBINE
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Non-capture Indirect sCO, Plant Study

sCO, Cycle and Heat Source Parameters — Reference Case RhtlC760A

Primary air fraction
Secondary air fraction
Pressure drop
Excess air
Infiltration air
Lime molar feed rate

Inlet temperature

Max inlet pressure
PR, P

7 ' exit

Expander

Isentropic efficiency
Pyrop HP side

Pyrop LP side
Recuperator

LTR Avg T,,,

HTR Min Tapp

Non-cond cooler
CO, cooler

Pyrop CO, side
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0.235

0.765
6.6 kPa

3.1%

2%
2.4 times sulfur feed rate
760 °C
34.5 MPa
4.05, 8.51 MPa
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0.2%
0.8%
5.6°C
5.6 °C
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CO, main
compressor
intercoolers

Recompression

CO, main

compressor

CO, bypass
compressor

CO, main
compressor
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Non-cond cooler
Pyrop CO, side
Stages
Cooling source
CO, bypass

Pinlet
P

exit
Isentropic efficiency
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Intercooling stages
Exit pressure
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Stages
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Non-cond cooler

Pyrop CO, side
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35°C
13.8 kPa per stage

1

Process cooling
water/Cooling tower

22.4%
7.75MPa (= P
35.10 MPa
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2
1

35.03 MPa
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2
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Approach and Methodology for Case Permutations TL LABORATORY

* Starting with reference Case RhtIC760A:

* Developed cycle state point changes and minor cycle

1 Stack
configuration changes i l
. S o _
* Applied each individually to reference Case i 16 Fiuo Gas 19’?’2‘". I
41—
RhtIC76OA FD Fan " Hzige i ain CO
. . . . Ambient Air S*D_1 O - T Compressf:r
* Modifications that increased process efficiency and 1 R a8 V. Siage 2
. .o . . PA Fan erv Hi Fly Ash
cither reduced or minimally increased COE retained , ol 2% | | rempersire ’
. . uidized Be Recuperator
for further consideration Coal —11—> Compustor |4 og] J )
' ) . Limestone 12— > High *45 Low Corii;rgs%or
* Using T-Q diagram for recuperator train: R ol W [y 34? Stage
3
. . . I
* Adjustments proposed to the heat integration scheme v 2
that were likely to increase the power cycle efficiency gz fovoeoen e eymentecto Bottom T
. . . . . process streams and equipment are shown. Ash
without having a significantly adverse impact on the
COE TURBINE Compressor
37
* The combination of these two approaches led
to: Source: NETL

* Baseline Case

* Alternate Configuration Case
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Selection of Cycle Configurations LABORATORY

e Baseline Case:

* Applied the promising cycle state point and configuration changes to reference Case RhtIC760A
sequentially

* Order of introduction of changes was based on the results obtained from the one-off analysis
* Changes that both increased process efficiency and lowered COE were applied first
* Changes that increased efficiency with a neutral or slightly negative impact on COE applied next

* Changes that would adversely impact etficiency but lead to a large drop in COE were only considered
it the COE goal could not otherwise be achieved

* Alternate Configuration Case:

* Developed by first identifying promising changes in the heat integration scheme

* If a preliminary techno-economic analysis yielded a higher efficiency or lower COE than for
reference Case RhtIC760A:

* Configuration was retained for further study
* Same methodology for sequentially applying process changes used
* Only the most promising of these alternatives were investigated
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Baseline Case

State Point and Configuration Changes Adopted

* Elimination of VTR

* Reduction in CO, cooler temperature to 90 °F

- 108 °F <’ OF-
c2 3 ™
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* Additional main CO, compressor intercooler stage

1113

°F
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A

387 °F
—V\V

L

* Slight increase in CFB pressure

111 °F 377 °F 1172 °F j\/\,—
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Alternate Configuration Case

State Point and Configuration Changes Adopted

* High temperature economizer (Econl) in parallel

with HTR

* Plus same changes as Baseline Case

iy
A
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RH
379.2 MW

T2 =

90 °F
116 °F 90 °F - 108 °F - 111 °F
- S
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Compr. —_— (3
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Techno-economic Analysis Results Summary

Comparison of Baseline sCO, Plant with Rankine Plants

* Compared to reference
l(llase B12A, Baseline Case
as:

* 8.8 percentage point higher
process etficiency (HH

* 6.6 percentage point higher
cycle efficiency

36%0 lower water consumption
16% reduction in CO?2
emissions

Lower CO, emissions than
current EPA limit*

.S. DEPARTMENT OF

Performance Summary

Reference Case
B12A
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Baseline Case Alternate Config

Total Gross Power, MWe 580 578 584 584
Total Auxiliaries, MWe 30 27 17 17

Net Power, MWe 550 550 567 567

HHV Net Plant Efficiency (%) 40.7% 44.1% 49.5% 49.5%
LHV Net Plant Efficiency (%) 42.2% 45.8% 51.3% 51.3%
HHV Boiler Efficiency, % 89.1% 89.1% 92.9% 92.9%
LHV Boiler Efficiency, % 92.4% 92.4% 96.3% 96.3%
Power Cycle Efficiency, % 48.2% 52.0% 54.8% 54.8%
CO, Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr) 2,192 (2,078) 1,873 (1,776) 1,701 (1,612) 1,701 (1,613)
As-Received Coal Feed, kg/hr (Ib/hr) 179,193 (395,053)| 165,482 (364,825)| 152,162 (335,460)| 152,162 (335,460)
Limestone Sorbent Feed, kg/hr (Ib/hr) 17,707 (39,037) | 16,352(36,050) | 35,618 (78,525) | 35,618 (78,525)
HHV Thermal Input, kWt 1,350,652 1,247,323 1,146,927 1,146,927
LHV Thermal Input, kWt 1,302,740 1,203,058 1,106,225 1,106,225
Raw Water Withdrawal, (m3/min)/MW ¢ (Gpm/MW o) 0.035 (9.3) 0.030 (8.0) 0.024 (6.2) 0.024 (6.2)
Raw Water Consumption, (m*/min)/MW e (Gpm/MW ;) 0.028 (7.4) 0.024 (6.4) 0.018 (4.7) 0.018 (4.7)
O, Mole Percent in Boiler Exit, % 3.4% 3.4% 1.0% 1.0%

CO, Emissions (Ib CO,/MWh-gross) 1,617 1,490 1,353 1,353
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Techno-economic Analysis Results Summary

Comparison of Baseline sCO, Plant with Rankine Plants

e Compared to reference
AUSC Case 5, Baseline
Case has:

* 5.4 percentage point higher

process etficiency

* 2.8 percentage point higher
cycle etficiency

* 22% lower water consumption

¢ 9% reduction in CO?
emissions

[ J

Lower CO, emissions than
current EPA limit*
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Performance Summary

Reference Case
B12A
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Baseline Case Alternate Config

Total Gross Power, MWe 580 578 584 584
Total Auxiliaries, MWe 30 27 17 17

Net Power, MWe 550 550 567 567

HHV Net Plant Efficiency (%) 40.7% 44.1% 49.5% 49.5%
LHV Net Plant Efficiency (%) 42.2% 45.8% 51.3% 51.3%
HHV Boiler Efficiency, % 89.1% 89.1% 92.9% 92.9%
LHV Boiler Efficiency, % 92.4% 92.4% 96.3% 96.3%
Power Cycle Efficiency, % 48.2% 52.0% 54.8% 54.8%
CO, Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr) 2,192 (2,078) 1,873 (1,776) 1,701 (1,612) 1,701 (1,613)
As-Received Coal Feed, kg/hr (Ib/hr) 179,193 (395,053)| 165,482 (364,825)| 152,162 (335,460)| 152,162 (335,460)
Limestone Sorbent Feed, kg/hr (Ib/hr) 17,707 (39,037) | 16,352 (36,050) | 35,618(78,525) | 35,618 (78,525)
HHV Thermal Input, kWt 1,350,652 1,247,323 1,146,927 1,146,927
LHV Thermal Input, kWt 1,302,740 1,203,058 1,106,225 1,106,225
Raw Water Withdrawal, (m3/min)/MW ¢ (Gpm/MW o) 0.035 (9.3) 0.030 (8.0) 0.024 (6.2) 0.024 (6.2)
Raw Water Consumption, (m*/min)/MW e (Gpm/MW ;) 0.028 (7.4) 0.024 (6.4) 0.018 (4.7) 0.018 (4.7)
O, Mole Percent in Boiler Exit, % 3.4% 3.4% 1.0% 1.0%

CO, Emissions (Ib CO,/MWh-gross) 1,617 1,490 1,353 1,353
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Techno-economic Analysis Results Summary

Comparison of Baseline sCO, Plant with Rankine Plants

* Compared to Alternate
Configuration Case,
Baseline Case has:

* Essentially identical
performance
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Performance Summary B12A AUSC Case 5 Baseline Case Alternate Config
Total Gross Power, MWe 580 578 584 584
Total Auxiliaries, MWe 30 27 17 17
Net Power, MWe 550 550 567 567
HHV Net Plant Efficiency (%) 40.7% 44.1% 49.5% 49.5%
LHV Net Plant Efficiency (%) 42.2% 45.8% 51.3% 51.3%
HHV Boiler Efficiency, % 89.1% 89.1% 92.9% 92.9%
LHV Boiler Efficiency, % 92.4% 92.4% 96.3% 96.3%
Power Cycle Efficiency, % 48.2% 52.0% 54.8% 54.8%
CO, Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr) 2,192 (2,078) 1,873 (1,776) 1,701 (1,612) 1,701 (1,613)
As-Received Coal Feed, kg/hr (Ib/hr) 179,193 (395,053)| 165,482 (364,825)| 152,162 (335,460)| 152,162 (335,460)
Limestone Sorbent Feed, kg/hr (Ib/hr) 17,707 (39,037) | 16,352(36,050) | 35,618 (78,525) | 35,618 (78,525)
HHV Thermal Input, kWt 1,350,652 1,247,323 1,146,927 1,146,927
LHV Thermal Input, kWt 1,302,740 1,203,058 1,106,225 1,106,225
Raw Water Withdrawal, (m3/min)/MW ¢ (Gpm/MW o) 0.035 (9.3) 0.030 (8.0) 0.024 (6.2) 0.024 (6.2)
Raw Water Consumption, (m*/min)/MW e (Gpm/MW ;) 0.028 (7.4) 0.024 (6.4) 0.018 (4.7) 0.018 (4.7)
O, Mole Percent in Boiler Exit, % 3.4% 3.4% 1.0% 1.0%
CO, Emissions (Ib CO,/MWh-gross) 1,617 1,490 1,353 1,353




Techno-economic Analysis Results Summary

Comparison of Baseline sCO, Plant with Rankine Plants

* Compared to reference Case
B12A, Baseline Case has:

* 5 MW increase in cycle output

* 13 MW decrease in auxiliary power
* Coal pulverizers
* No wet FGD
* Less cooling duty

* 17 MW increase in net plant power
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Power Summary B12A AUSC Case 5 Baseline Case Alternate Config
sCO,/Steam Turbine Gross Power 588,516 586,305 741,272 740,316
sCO, Main Compressor - - -85,654 -83,172
sCO, Bypass Compressor -—- --- -62,558 -64,096
Generator Loss -8,828 -8,795 -8,896 -8,896

TOTAL POWER GENERATED 579,688 577,510 584,164 584,151
Coal Handling -430 -420 -399 -399
Sorbent Prep/Injection -958 -890 -157 -157
Pulverizers -2,690 -2,480 -72 -72
Ash Handling and Dewatering -620 -580 -1,756 -1,756
Baghouse -90 -80 -7 -7
Turbine Auxiliaries -400 -400 -400 -400
Wet FGD -2,830 -2,610 == ---
Condensate Pumps -800 -640 === ---
SCR -40 -40 === ---
Miscellaneous Balance of Plant -2,000 -2,000 -2,000 -2,000
Circulating Water Pump -4,980 -4,290 -3,636 -3,636
Cooling Tower Fans -2,340 -2,010 -2,122 -2,122
Air & Flue Gas Fan Power -9,690 -8,950 -4,647 -4,647
Transformer Losses -1,820 -1,800 -1,794 -1,794

TOTAL AUXILIARIES -29,688 -27,190 -16,990 -16,990

NET POWER 550,000 550,320 567,174 567,162




Techno-economic Analysis Results Summary

Comparison of Baseline sCO, Plant with Rankine Plants

* Compared to reference
AUSC Case 5, Baseline Case
has:

* 7 MW increase in cycle output

* 10 MW decrease in auxiliary power
* Coal pulverizers
* No wet FGD
* Less cooling duty

* 17 MW increase in net plant power
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Power Summary B12A AUSC Case 5 Baseline Case Alternate Config
sCO,/Steam Turbine Gross Power 588,516 586,305 741,272 740,316
sCO, Main Compressor --- --- -85,654 -83,172
sCO, Bypass Compressor --- --- -62,558 -64,096
Generator Loss -8,828 -8,795 -8,896 -8,896

TOTAL POWER GENERATED 579,688 577,510 584,164 584,151
Coal Handling -430 -420 -399 -399
Sorbent Prep/Injection -958 -890 -157 -157
Pulverizers -2,690 -2,480 -72 -72
Ash Handling and Dewatering -620 -580 -1,756 -1,756
Baghouse -90 -80 -7 -7
Turbine Auxiliaries -400 -400 -400 -400
Wet FGD -2,830 -2,610 --- ---
Condensate Pumps -800 -640 o= ---
SCR -40 -40 == ---
Miscellaneous Balance of Plant -2,000 -2,000 -2,000 -2,000
Circulating Water Pump -4,980 -4,290 -3,636 -3,636
Cooling Tower Fans -2,340 -2,010 -2,122 -2,122
Air & Flue Gas Fan Power -9,690 -8,950 -4,647 -4,647
Transformer Losses -1,820 -1,800 -1,794 -1,794

TOTAL AUXILIARIES -29,688 -27,190 -16,990 -16,990

NET POWER 550,000 550,320 567,174 567,162




Summary of Capital Costs/COE S|eeey

Steam Rankine vs. sCO, Cases ($/kW) TL LABORATORY

Baseline Case Alternate Config

Reference Case AUSC Case 5

Capital Cost Summary

* Compared to the reference Case

Account

B12A

TPC ($/kW)

B12A, Baseline Case had: Coal & Sorbent Handiing 83 78 81 81
Coal & Sorbent Prep & Feed 39 37 43 43

* 14 perceﬂt IOWCI TOC Feedwater & Miscellaneous BOP Systems 170 146 37 37

° 3 percent lower COE Boiler & Accessories 621 611 669 635

Gas Cleanup & Piping 304 287 57 57

* Compared to the reference AUSC HRSG, Ducting, & Stack 83 82 86 86
M ° Steam/sCO, Power Cycle 304 326 599 641

Case 5’ Basellne Case had. Cooling Water System 80 72 71 71

L4 1 5 pe]_‘cent greate]_‘ TOC Ash & Spent Sorbent Handling Systems 31 29 52 52
Accessory Electric Plant 112 109 100 100

e 1.6 pCfCCﬁt gfeatef COE Instrumentation & Control 48 47 42 42

i 2 29

* Compared to the Alternate Config mprovemonts to Site il 2 °

R Buildings & Structures 122 119 121 121
Case, Baseline Case had: Total Plant Costs 2,026 1,972 1,986 1,995

e $10/kW lower TOC. Differences due to:

Owner's Costs & TOC ($/kW)

* Boiler & Power Cycle Accounts sc\::r:r;v?::::ht Cost (TOC) 2?5(17 2?2;57 2‘,12773 2‘:3:3
* Differences in relative HX duties Component COE Summary (MWh)
* Lower HTR driving force E;F:;al)&M 399-60 398-50 491 -72 491 -74
* Slightly greater COE (0.2 § /MW h) Variable O&M o1 os 58 58
* Difference not significant Fuel 24.6 227 20.2 20.2
Total (with T&S) 82.3 78.6 79.9 80.1

.S. DEPARTMENT OF
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T-Q Economizer Diagram for Baseline sCO, plant TL LABORATORY

. . . 700
* LTR has an internal pinch point: —— Hot Side

* Minimum Tapp = 3.7 °C

S ——Cold Side
 ColdendT, _=11.9°C 9 500
« Average T, = 5.6 °C 2 w00
verage T, = 5. 2
g 300
* HTR has considerably larger average Tappz § 200
* Coldend T,,, = 5.6 °C 100 ;
* Hotend T,/ =61.2°C 0 LTR . HTR
0 500 1000 1500 2000
Duty (MW)
* Low temperature economizer (Econ2): o S

® COld eﬂd Tapp — 5.6 OC :G 800 ——Cold Side /
* Hotend T, =5.6°C 2 600 :
* Average T, =83 °C § 400 o - |
* High temperature economizer (Econl): = 200 } con
* Coldend T, =56 °C 0 | |
° — o 0 50 100 150 200
Hotend T, =237 °C Duty (MW)
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Heat Integration Analysis Results Summary

T-Q Recuperator Diagram for Alternate Configuration sCO, plant

* LTR has an internal pinch point 700

——Hot Side
* Minimum Tapp = 3.7 °C o — Cold Side
. ~ o & 500
Cold end T, = 11.7 7C ¢ 400
* Average T, = 5.0 °C 5 300
* HTR has modestly larger average T, | g 200 |
100 i
* Coldend T, , = 5.6 °C ,  LTR HTR ,
e Hot end Tapp =56 °C 0 500 1000 1500 2000

Duty (MW)

* Average T,d1pp =15.5°C

1000

* Low temperature economizer (Econ2) —Hot Side

— 800 -~ ——cold Side i
e Cold end Tlep =5.6°C g Cold sid :
* Hotend T, = 5.6 °C % ™ Econ2 Econl
* Average Tapp = 8.3 °C % 400 : :
* High temperature economizer (Econl) 200
 Cold end Tapp = 283 °C 0
0 50 100 150 200 250
* Hotend Tapp =222°C Duty (MW)
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Heat Integration Analysis Results Summary

Comparing Heat Integration - Baseline Case vs. Alternate Configuration Case

* Baseline Case
* Maximum LTR performance
* Moderate HTR performance
* Moderate Econl performance

* Maximum Econ2 performance

* Alternate Configuration Case
* Maximum LTR performance
* Near maximum HTR performance
* Poor Econl performance

* Maximum Econ2 performance
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121°F A11132F ﬁ |
LR e
115°F 90°F -108 °F 111°F 377°F 1172°F
e A J\/\/ 5 1400 °F J\/\
L — ' Econ2 Econl SH .
Inter Compr. Inter- Compr. 66.2 MW 140.2 MW 468.8 MW ‘1205_;\/\/
€l Cooler Stage2  Cooler Stg3111aF [ _’“'t
- %ﬁ * 390R2 MW
— '
LTR ) HTR oo -
1 Y377 I 213 P . 1400 °F
20
< YAV g AYAY ;
526.1 MW 1536.7 MW
131°F H
ﬁ 393 °F . l
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Efficiency and COE versus Minimum Recuperator T, LABORATORY

* Process efficiency decreases 504 816
monotonically and almost linearly with

. . . T 50.2 —o—Proc eff 81.4
increasing minimum T, S s00 o COE s
* COE passes through a minimum at a < 198 810 _
- <
Tapp 0] 6.7 C > 49.6 80.8 §
* Gray dashed vertical line and green 3 494 806 &
marker £ 49 80.4
? O
* Result suggests that a lowet COE could  § ¢ 802
be attained with a higher minimum T, =~ & 3 80.0
of 6.7 °C 48.6 . 79.8
* However the 0.2 percenta§e point drop i 2 ) A e
in process efficiency was deemed more

Minimum temperature approach (°C)

% nificant than the negligible drop in
E
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* For any sCO, power cycle there is an

optimum: 49.00
* Turbine inlet pressure < 48.95 oY .
* CO, compressor inlet pressure é 48.90 . ‘.
* Sensitivity analﬁis was performed on S 4ses i e
reference Case RhtIC760A to . : g ...
. . 8 48 | .
determine optimum cycle pressures 2 e ; .
o 438. :
* Optimum turbine inlet pressure 2 1570 ' .,
exceeds the maximum turbine inlet S “o
a 48.65

pressure constraint
* 34.5 MPa 48.60

* Optimum comllaressor inlet pressure
found to be 8.41 MPa

* Yielded maximum process etficiency
* Optimum cycle pressure ratio = 4.1

8 8.2 8.4 8.6 8.8 9 9.2
Compressor inlet pressure (MPa)
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* Pressure drops used for power cycle should be
considered optimistic targets that were based on the
desire to maximize process efficiency

B
N
(o)

oY
N
[e)}

* A performance only sensitivity analysis was .
performed on reference Case thtI 760A to quantify
the impact of pressure drop on process efficiency

oY
N
H

* Independent variables were the pressure drop factors
* AP =P, * Factor
* Pressure drop factors used were:

* 0.008 for the CO, cooler, CO, side of economizers
and LP side of recuperators

* 0.002 for HP side of recuperators
* 0.01 for CO, side of the CFB
o PfOCCSS efﬁCiency fOI' SCOZ POWCI' CYCIC iS moderately 0 0.005 0.01 0.015 0.02 0.025 0.03
sensitive to the pressure drop
* Particularly on the low-pressure side of the cycle

—eo—Cooler, Eco

o
Lo
N

—e—LP Recup
HP Recup
—o—CFB

Process efficiency (%HHV)
8
o

o
o0
[00]

o
o
o))

Pressure drop factor

* If more conservative pressure drop factors had been
used tStrlple the optimistic values) the efficiency
1

benefit of the Baseline Case compared to reference
AUSC Case 5 would have been cut by 30%
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sCO, Power Cycle Component TPC, COE versus ATPC

* It is a study goal that the COE for the 90
CO, Turbine Section
advanced technology power plants not 88 €0, sptem e
Main CO, Compressor
exceed COE for reference Case B12A 86 _Bypass CO; Compressr
— 84 HTR
° ° < CO, Cooler
* Horizontal bars are drawn to scale with § 8y I oo < Tooo-t COE fovrelerence Cse BIA
respect to the horizontal axis > 80 |
- |
. w /8
* For Baseline Case COE to equal 3 76 nrase o P Cosodedforthebelinacco,
reference Case B12A requires either: 74 I
|
* 57 $MM increase in the aggregate TPC 72 57>
. . 70 1
* 5 percent increase in the aggregate TPC 200 -150  -100  -50 0 0 100 150 200
e 17 percent increase in power Cyde TPC Change in Baseline Case TPC ($1,000,000)

* 49 percent increase in turbine TPC

107 percent increase in recuperator TPC
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* This paper has (}))resented the results of a preliminary examination of the potential benefits of
the indirect sCO, power cycle for improving the efficiency and cost of non-capture coal-fired
power plants

* Results have shown that the sCO, power cycle can achieve much higher efficiencies than SOA
PC/Rankine systems with no increase in COE

* Compared to prior NETL sgrstems studies on advanced power generation technologies (e.g.,
PC power plant with an AUSC Rankine cycle) the sCO, power cycle offers a significant
increase in overall efficiency of greater than 5 percentage points

* Full-load, steady-state carbon dioxide S\%Oﬁz emissions of 1353 1bs CO,/MWh gross nominally
meets the current EPA’s 1400 1bs CO, gross for new coal plants
* However, the EPA’s standard is based on average annual emissions — additional analyses are required to assess system
performance under realistic annual operating profiles, including part-load

* The study has also shown that plants based on the sCO, power cycle have significantly lower
(22-33%) water consumption than comparable reference Rankine cycle plants

* Due to higher thermal efficiencies of the sCO, plants
* Elimination of intrinsic water losses arising from the Rankine cycle such as from blowdown

.S. DEPARTMENT OF
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FY18-FY19

* Continue to explore the indirect sCO, power cycle with the goals of
* Expanding its range of application
* Further optimizing its performance and cost
* Reducing the current level of uncertainty in the performance and cost models
* Exploring more complex aspects of the cycle development related to system dynamics

* One current study is exploring in greater detail the impacts of various cooling technology
options on the cycle and overall plant performance

* Goal is to optimize the cooling technology choice for any given ambient condition or site location

* Other concepts planned for near-term examination are based on the results of the sensitivity
analyses performed in this study and include:

* Investigations of condensing cycles

* Conducting a more thorough optimization of the cycle parameters i.ncludinf individual minimum
temperature approaches for each end of every recuperator, economizer, and intercooler

* Better defining the trade-off between process efficiency gains and capital cost results from pressure drops in
the cycle unit operations

.S. DEPARTMENT OF
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* National Energy Technology Laboratory (NETL), “Development of Coal-Fueled
Indirect sCO, Systems without CO, Capture”;, DOE/NETL report in preparation.
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