

Thermal-hydraulic performance of discontinuous fin heat exchanger geometries using Supercritical CO₂ as the working fluid

Sandeep R Pidaparti, Devesh Ranjan, Mark Anderson

The 6th International Symposium – Supercritical CO₂ power cycles Pittsburgh, PA March 27-29, 2018

Outline

- Introduction
- Experimental test facility
- Data analysis procedure
- Results and discussion
 - Correlation development and comparison with existing geometries
- Summary/Conclusions

Supercritical CO₂ Power Cycles – Overview

- U.S. Department of Energy (DOE) initiative for clean and efficient energy conversion.
- Supercritical CO₂ power cycles are gaining increasing attention compared to the widely-used steam Rankine cycles and gas Brayton cycles.

Supercritical CO₂ Power Cycles – Overview

- Moderate critical pressure (7.38 MPa) and critical temperature $\sim 31.1^{\circ}$ C is near ambient temperature (Dry air cooling feasible)
- Density resembles that of liquid near the critical point
 - Reduced compression work, larger W_{net}
- Higher energy density compared to H₂O and He
 - Allows Compact turbomachinery to achieve same power
- Specific heat mismatch between high and low pressure sides requires two stage recuperation and split compression to increase recuperation effectiveness (> 2/3rd of heat is recuperated)

Printed Circuit heat exchangers for sCO₂ power cycles

- Channels/patterns are photo chemically etched on to a plate.
- Semicircular channels are convenient to etch because of the inherent process etching corner radius

- Multiple plates are diffusion bonded by applying pressure at high temperature (50-80% of the melting temperature) to form monolithic core
- Promotes grain growth at the interface (No foreign material as in the case of brazing)

Chemical etching and diffusion bonding

- Typical size of heat exchanger core, 1.5 x 0.6 x 0.6 [m]
- Multiple cores are welded together to form a heat exchanger without headers

Core Welding

Source: Heatric

Experimental facility

Test section

- RTD probes are used to measure inlet and outlet temperature to the Heat exchanger
- Wall temperatures are measured using 20 type K-thermocouples (10 on each plate)
- Volumetric flow rate of water to each cooling block measured using turbine type flowmeters
- Inlet and outlet temperatures of water to each cooling block are measured using type K-thermocouples
- Inlet pressure measured using gage pressure transmitter and pressure drop measured using differential pressure transmitter.

Heat exchanger test plates

	4mmNACA0020	
	Design	Measured
Chord width, <i>c</i> (mm)	4	3.566
Thickness/Chord length	0.2	0.202
Fillet radius, r (mm)	0	0.795
Channel depth, h (mm)	0.95	0.685
Axial pitch, s (mm)	3.5	3.466
Lateral pitch, p (mm)	3.6	3.657
Plate thickness, <i>t</i> (mm)	6.3	
Number of Rows (N_x)	144	
Airfoils per Row (N_y)	6	
Hydraulic diameter, D_h (mm)	1.205	1.112
Unit cell heat transfer area, A_s (mm ²)	30.18	24.94
Cross-sectional area, A_c (mm ²)	15.96	12.07
Measured Relative roughness	7.259e-3	

	Design	Measured	
Fin thickness, t_{fin} (mm)	0.65	0.65	
Fillet radius, r (mm)	0	0.47	
Fillet radius, r_{fin} (mm)	0	0.18	
Fin depth, h (mm)	0.65	0.65	
Fin spacing, s (mm)	1.95	1.95	
Fin length, l (mm)	9.025	7.69	
Lateral pitch, p (mm)	18.05	17.68	
Plate thickness, <i>t</i> (mm)	6.3		
Number of unit cells along length (N_x)	28		
Number of unit cells per row (N_y)	9		
Hydraulic diameter, D_h (mm)	0.9502	0.9973	
Unit cell heat transfer area, A_s (mm ²)	82.01	91.133	
Cross-sectional area, A_c (mm ²)	11.43	11.567	
Measured Relative roughness	7.4e-3		

Test matrix

Data recorded for 500s @ 1Hz after reaching steady state

Range of experimental parameters		Uncertainty of measured variables		
Inlet pressure (bar)	75, 81, 102	\dot{m}_{CO_2} (kg/s)	$\pm 1\%$ of measured value	
CO_{n} inlet temperature (°C)	$50 - 200^{\circ}$ C (In increments of 10°C)	$CO_2 T_{in}, T_{out}$	±0.15°C	
	$20 - 50^{\circ}$ C (In increments of 5° C)	P _{in}	±0.025% of full scale (0-3000 psig)	
CO_2 flowrate, \dot{m}_{CO_2} (kg/h)	S_{O_2} (kg/h) 8.8 – 28.8 kg/h		$\pm 0.025\%$ of full scale (0-15 psid)	
	(In increments of 2.9 kg/h)	<i>V</i> _{dot} (GPM)	$\pm 1.5\%$ of measured value	
Water inlet temperature (°C)	$10 - 20^{\circ}C$		+0.15°C	
Water flow rate (GPM)	0.05 - 0.1	ΔI water	±0.15°C	
	0.00 0.1	T _{wall}	±0.15°C	

Data analysis procedure – Frictional Pressure drop

$$\Delta P_{measured} = \Delta P_{friction} + \Delta P_{local} + \Delta P_{accel} + \Delta P_{gravity}$$

$$\Delta P_{accel} = G^2 \left(\frac{1}{\rho_{out}} - \frac{1}{\rho_{in}} \right)$$

$$\Delta P_{gravity} = \pm g \left(\frac{i_{out}\rho_{out} + i_{in}\rho_{in}}{i_{out} + i_{in}} \right) Lsin\theta$$

$$\Delta P_{local} = \left[1 - \frac{A_c}{A_{manifold}}\right]^2 \rho_{out} \frac{v_{out}^2}{2} + 0.5 \left[1 - \frac{A_c}{A_{manifold}}\right]^{0.75} \rho_{in} \frac{v_{in}^2}{2}$$

$$\Delta P_{expansion} \qquad \Delta P_{contraction}$$

Data analysis procedure - Test section Heat duty

Test section heat duty

$$Q_{CO_2} = \dot{m}_{CO_2}(i_{in} - i_{out})$$

$$Q_{top}[j] = \dot{V}_{top}[j]\rho|_{T_{avg}}C_p|_{T_{avg}}(T_{out,top}[j] - T_{in,top}[j])$$
$$Q_{bottom}[j] = \dot{V}_{bottom}[j]\rho|_{T_{avg}}C_p|_{T_{avg}}(T_{out,bottom}[j] - T_{in,bottom}[j])$$

$$Q_{water} = \sum_{j=1}^{10} Q_{top}[j] + \sum_{j=1}^{10} Q_{bottom}[j]$$

$$\bar{Q} = 0.5(Q_{CO_2} + Q_{water})$$

• Maximum %*Difference* between water side and CO₂ side heat duties is <10% when the CO₂ inlet/outlet temperature is near the pseudo-critical temperature

Georgia

Data analysis procedure – Local bulk and wall temperatures

Bulk fluid temperature

 $i[j + 1] = i[j] - \frac{Q_{top}[j] + Q_{bottom}[j]}{m_{CO_2}}$ $i_b[j] = 0.5(i[j] + i[j + 1])$

Assuming linear pressure drop, $P_b[j] = P_{in} - \frac{\Delta P}{L}x[j]$

$$T_b[j] = f(i_b[j], P_b[j])$$

Wall temperature

 $T_{w,calc,top}[j] = T_{w,meas,top}[j] + \frac{Q_{top}[j].z_{top}[j]}{k_{ss316}.A_{cb}}$ $T_{w,calc,bottom}[j] = T_{w,meas,bottom}[j] + \frac{Q_{bottom}[j].z_{bottom}[j]}{k_{ss316}.A_{cb}}$

 $T_w[j] = 0.5(T_{w,calc,top}[j] + T_{w,calc,bottom}[j])$

Data analysis procedure – Average bulk and wall temperatures

Data analysis procedure – Local and average heat transfer coefficients

$htc[j] = \frac{Q_{top}[j] + Q_{bottom}[j]}{A_s \cdot (T_b[j] - T_w[j])}$	$\overline{htc} = \frac{\overline{Q}}{N.A_s(\overline{T}_b - \overline{T}_w)}$
$Nu[j] = \frac{htc[j].D_h}{k_b}$	$\overline{Nu} = \overline{htc}.\frac{D_h}{\overline{k}_b}$

Pressure drop data – Example

- Test condition
 - Operating pressure 10.2 MPa
 - 4mm NACA0020 airfoil Offset fin test plate
- Pressure drop decreases rapidly in the vicinity of pseudo-critical point → Due to increase in viscosity and density leading to lower velocities and Re for constant mass flux
- Pressure drop increases with increase in mass flux (and Re)

Heat transfer data – Example

Friction factor – Correlation development

• Calculated frictional pressure drop for each case can be written as,

$$\Delta P_{calc} = \sum_{i=1}^{N} 2\left(\frac{L}{N.D_h}\right) \frac{G^2}{\rho_i} f_i$$

Where, ρ_i and f_i represent local density and friction factor. Assuming a friction factor of the form, $f_i = aRe_i^b$

Coefficients a and b are found out using least squares curve fitting approach

 $\sum_{i=1}^{N_{expt}} \left(\Delta P_{calc}^{i} - \Delta P_{exp}^{i} \right) \rightarrow minimum$

$$Error = \frac{\Delta P_{calc} - \Delta P_{exp}}{\Delta P_{exp}}.100$$

Heat exchanger plate	a	b
Offset rectangular fin plate	0.0276	-0.002
Offset NACA0020 airfoil fin plate	0.0077	0.1201

Friction factor – Correlation development

Heat exchanger plate	MAD Error	σ Error	Points with Error <15%	Points with Error <25%
Offset rectangular fin plate	11.2%	13.7%	80%	91.7%
Offset NACA0020 airfoil fin plate	8.1%	11%	88.6%	94.7%

Nusselt number – Correlation development

• Calculated average Nusselt number for each case can be written as the Dittus-Boelter form $(a\overline{Re}^{b}\overline{Pr}^{c})$ along with additional wall to bulk property ratios to take into account non-linear variation of properties with temperature.

$$Nu_{calc} = a\overline{Re}^{b}\overline{Pr}^{c}\left(\frac{\overline{\rho_{b}}}{\overline{\rho_{w}}}\right)^{d}\left(\frac{\overline{C_{pb}}}{\overline{C_{p}}}\right)^{e}$$

Where, $\overline{C_p} = \frac{\overline{i_w} - \overline{i_b}}{\overline{T_w} - \overline{T_b}}$

Coefficients a through e are found out using least squares curve fitting approach,

 $\sum_{i=1}^{N_{expt}} \left(Nu_{calc}^{i} - Nu_{exp}^{i} \right) \rightarrow minimum$

$$Error = \frac{Nu_{calc} - Nu_{exp}}{Nu_{exp}}.100$$

Heat exchanger plate	a	b	c	d	e
Offset rectangular fin plate	0.1034	0.7054	0.3489	0.9302	-0.366
Offset NACA0020 airfoil fin plate	0.0601	0.7326	0.3453	0.4239	-0.3556

Nusselt number – Correlation development

Nusselt number correlation – Gas like regimes

Comparison with existing correlations

S-shaped fins from Ngo et al. (2007) \rightarrow $f_{SS} = 0.4545 Re^{0.43}; Nu_{SS} = 0.174 Re^{0.593} Pr^{0.43}$

Zig-zag channels from Ngo et al. (2007) $\rightarrow f_{ZZ} = 0.1924 Re^{-0.091}$; $Nu_{ZZ} = 0.629 Re^{0.629} Pr^{0.317}$

Conclusions

- Heat transfer and pressure drop characteristics of sCO₂ flow through discontinuous offset NACA0020 airfoil and rectangular fins was investigated experimentally
- Correlations to predict average and local Nusselt numbers as well as frictional pressure drop are proposed based on least squares fitting to the experimental data
- Both the heat exchanger plates offered significantly lower pressure drop compared to zig-zag channel whereas the Nusselt numbers are almost similar based on the correlations of Ngo et al. (2007)
- Mechanical Integrity of such discontinuous fins geometries needs to be verified and design procedures needs to be established.

Georgia

- Offset Rectangular fin geometries could still potentially use ASME Sec VIII procedures

Thank you for your time!

Questions?

Nusselt number correlation – Gas like regimes

 T_{GL}

• Data was divided into three regimes – Liquid like, pseudo-critical transition, and gas like regime based on specific work of thermal expansion/contraction

$$E_o = P.\beta/(\rho C_p)$$

= 0.0034P³ - 0.3284P² + 15.963P - 43.85

