The Effect of Impurities on Oxidation in Supercritical CO₂ at 750°C

Bruce Pint and James Keiser Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory

March 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Acknowledgments

- Funding from DOE Solar Energy Technology Office
 - SunShot Initiative, SuNLaMP award number DE-EE0001556
- Funding from DOE Fossil Energy Program
 - Vito Cedro (NETL) project monitor, Regis Conrad (DOE) program manager
- GDOES, Michael Lance
- TEM, Kinga Unocic
- ORNL technicians
 - Mike Howell
 - Mike Stephens
 - Tracie Lowe (SEM/ImageJ)
 - George Garner
 - Tyson Jordan

Supercritical CO₂ (sCO₂) has high efficiency potential for several power generation applications

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

for Young et al. 2011

Also Fujii and Muessner, 496

oxide scale

metal

Indirect- vs. direct-fired sCO₂ systems (i.e. closed vs. open)

Closed cycle (indirect-fired): "pure" CO₂ 100-300 bar

DOE SunShot funding

Open cycle (direct-fired): sCO_2 + impurities (O_2 , $H_2O...$)

DOE Fossil Energy funding

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25 MWe demo plant (Texas) Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology designed to compete with conventional fossil power.

Reported 95+% complete

Material challenges: Combustor: 1150°C (!?!) Turbine exit: 750°C/300 bar

OAK RIDGE

Moving forward with limited compatibility data! As audacious as Eddystone in 1960

Project goal is to study O₂+H₂O effects on sCO₂ compatibility

- Conflicting literature on effect of impurities (U.Wisc., EPRI)
- BUT, we can't easily pump impurities into flowing sCO₂ fluid
- AND can't monitor H₂O or O₂ level at pressure
- 1) 1 bar dry air, CO₂(99.995%), CO₂+0.15%O₂, CO₂+10%H₂O (2014-15)
- 2) Compare 1 & 300 bar: industrial vs. research grade CO₂ vs. lab air
 - Test matrix nearly complete, creating a baseline for understanding #5
- 3) Study 1 & 25 bar RG CO₂ vs. CO₂+10%H₂O vs. CO₂+10%H₂O+0.1%SO₂
 - 500 h exposures completed at 700° and 800°C
- 4) Study 1 & 43 bar RG CO₂ at 640°C to compare to gas-cooled reactors
- **5)** Constructed rig for 300 bar/750°C testing with $1\%O2+0.25\%H_2O$
- First experiment completed in February Pint 6th sCO₂ Symp. 2018

Two sCO₂ projects at ORNL

DOE Fossil Energy

- 750°C/300 bar: 500-h cycles
- Focus on impurity effects for direct-fire
 - Baseline research grade (RG) CO₂
 - New autoclave with controlled O_2 + H_2O
- Alloys
 - 310HCbN (HR3C, Fe-base SS)
 - 617
 - 230

- MarM247 (Al₂O₃-forming superalloy)
- Haynes 282 (Heat #1)
- 740H, Special Metals

DOE SunShot (CSP)

- 750°C/300 bar: 500-h cycles
 - Including 750°C/1 bar, 10-h cycles
- Focus on industrial grade (IG) CO₂
 - Indirect fired (closed loop)
- Alloys
 - Sanicro 25 (Fe-base SS)
 - 625
 - 740H, Special Metals
 - Haynes 282 (Heat #2)

		Air	RG CO ₂	IG CO ₂	$FE: CO_2 + O_2 / H_2 O$	
Cooperative test matrix:	1 bar	5,000 h	5,000 h	4,000 h		
8 Pint 6 th sCO ₂ Symp. 2018	300 bar		4,500 h	5,000 h	500 h	AK RIDGE

CO₂ compatibility evaluated three ways at 700°-800°C

Autoclave: 300 bar sCO₂ 500-h cycles

Correct temperature and pressure

Tube furnace: 1 bar CO₂ 500-h cycles

Same cycle frequency as autoclave

"Keiser" rig: 500-h cycles, 1-43 bar CO₂

Study impurities at 1-43 bar

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm H}_2O$ and $\leq 5 \text{ ppm O}_2$ industrial grade (IG) CO_2 : $18\pm16 \text{ ppm H}_2O$ and $\leq 32 \text{ ppm O}_2$

Four alloys selected for SunShot study

Composition analyzed by ICP-OES and combustion analyses

No major differences in mass change at 750°C between IG and RG CO_2 at 300 and 1 bar

Line: median values Box: 25-75% Whiskers: min./max. 5-10 specimens per condition

All conditions: not much different from lab. air exposure

12 Pint 6th sCO₂ Symp. 2018

Fe-based alloys show largest variations

Minor differences observed after 2,500 h exposures at 750°C

GDOES can detect C ingress (when it occurs)

GDOES: glow discharge, optical emission spectroscopy

No C detected in 740H at 750°C/300 bar 500 625, 700°C, 200bar RG CO₂, 1,500 h 450 740, 750°C/300 bar (counts) 400 300 Cr 400. 350. as-rec 24.5%Cr 2500 h ပ် 200 4000 h 20 Counts (a.u.) n 5000 h 15. Metal-oxide interface 10. 1.0 (counts) 0.8 5 0.6 0 3.0 0.4 С 2.5-Ο 0.2 2.0-270 ppm C 1.5-0 1.0 -5 10 15 25 30 35 0 20 0.5-Depth (µm) 0 100 150 200 50 250 300 350 400 450 0

14 Pint 6th sCO₂ Symp. 2018

Michael Lance (ORNL) presentation tomorrow

Effect of impurities and pressure (NACE Corrosion 2018) 800°C 500h: strong variations for 304H (steel "canary")

National Laboratory

SEM/EDX 304H: w/SO₂ at 1 bar formed thin protective scale (no good S maps)

800°C light microscopy: variations observed with pressure and SO₂

National Laboratory

800°C Scale Quantification: thinner scale at 25 bar (in some cases)

~30 measurements per condition

Does higher P promote a denser (fewer voids/cracks) scale? Except with SO₂: inhibits C/OH effects at 1 bar 25 bar increases p_{S_2} resulting in a negative effect

CAK RIDGE

TEM used to study porosity in scale formed on alloy 625 at 750°C

800°C Total Reaction (including internal oxidation): reduced in 25 bar except with 0.1%SO₂

0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect, especially for 304H Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O) on Fe-Cr Like SO₂ poisoning of metal dusting
0.1%SO₂ 25 bar: sulfidation attack with 25X higher p_{S2}

Oxford CO₂ lifetime model for UK gas-cooled reactors We need to determine relevance to industrial grade sCO₂

Experimental data (80-200 kh!) 580°-640°C: Cr tied up as carbides

Initial results show less mass gain in RG CO₂

100 90 80 Weight gain (mg/cm²) 70 60 ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ 20 Ē 30 Ŧ Ŧ 20 640 °C 620 °C 10 600 °C 580 °C 0 20 30 40 50 0 10 60 70 80 Exposure time (kh)

Gong et al. 2017 Figure 3:

23 Pint 6th sCO₂ Symp. 2018

Thanks to EDF, Y. Gong and R. Reed for providing mass change data

First 300 bar impurity data obtained New rig completed first cycle in February 2018 Second cycle completed March 27

Goal: 1%O₂+0.25%H₂O (industry suggestion) Not easy to control at 300 bar

Average of 3 specimens in first experiment

No plans to add SO₂ to autoclave

Summary: impurity and pressure effects

- Want to study impurities in sCO₂ for direct-fired clean energy concept at 750°C
 - Several studies at 1, 25 and 300 bar while waiting for 300 bar $sCO_2+H_2O+O_2$ autoclave tests
 - Comparison of industrial and research grade CO₂ at 1 and 300 bar
 - Symposium paper
 - Effect of H_2O and $0.1\%SO_2$ at 1 and 25 bar
 - Corrosion 2018 paper
 - 43 bar test to compare to extensive UK reactor database
 - Initial results at 300 bar $sCO_2+1\%O_2+0.25\%H_2O$
- Minor effects comparing IG and RG sCO₂
 - Similar mass gains in laboratory air
- Low SO₂ levels may be acceptable in sCO₂
 - More work needed to understand supercritical conditions
 - Beneficial "poisoning" effects of SO₂ may disappear at high pressure (S level set by coal)
- Current hypotheses
 - Higher P = denser, more protective scale
 - More characterization of thin scales required
 - SO₂ suppresses C & OH effects (Young & Quadakkers): can we take advantage?

My hero was rich and famous, long before the era of type and hype

"When I want to discover something, I begin by reading up everything that has been done along that line in the past - that's what all these books in the library are for. I see what has been accomplished at great labor and expense in the past. I gather data of many thousands of experiments as a starting point, and then I make thousands more."

- Thomas Alva Edison

Four alloys selected for this study

Composition analyzed by ICP-OES and combustion analyses

Alloy	Fe	Ni	Cr	AI	Co	Мо	Ti	Mn	Si	С	Other	
304H	70.4	8.4	18.4		0.1	0.3		1.6	0.3	0.06	0.4Cu,0.07N	steel "canary"
230	1.0	60.0	21.6	0.4	0.2	1.2		0.5	0.4	0.10	14.6W, 0.02La	solid-solution
Haynes 282	0.2	58.0	19.3	1.5	10.0	8.3	2.2	0.07	0.06	0.06		γ' - strengthened
MarM247	0.1	59.5	8.5	5.7	9.8	0.7	1.0	<	0.03	0.16	9.9W,3.1Ta,1.4Hf	turbomachinery
	(< is less than 0.02)											Al ₂ O ₃ -former

ASME Boiler & Pressure Vessel Code allowables:

CAK RIDGE

Many variables can be considered

Temperature

- $-Cr_2O_3$ better C barrier at higher T (?)
- Steels more T limited than in steam
- Pressure

- No strong effect of increasing P
- Thermal cycling

Stainless steel attacked at 700°-750°C

- Oxygen
 - ORNL & UW different results
- H₂O
 - Negative, especially for see
- CO
 - UW 1%CO results
- SO₂
 - Complicated...

500h at 800°C: SO₂ suppressed internal oxidation at 1 bar

Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich)

500h at 800°C: at 25 bar, 0.1%SO₂ resulted in more attack

700°C 500h: mainly small mass changes

Average mass change for three specimens: whiskers show a standard deviation

National Laboratory

Similar observation with 600°C ORNL study for staged pressurized oxy-combustion (SPOC):

Figure 5: Light microscopy of S30409 specimens exposed at 600°C for 500 h in two environments and two pressures.

O₂-10%H₂O: reduced attack at 17 bar compared to 1 bar 0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect (protective scale) Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O) 0.1%SO₂ 17 bar: sulfidation attack with 17X higher p_{S2}

800°C internal oxidation: lower at 25 bar except with SO₂

³⁴ Pint 6th sCO₂ Symp. 2018

- Hypotheses
 - Higher P = denser scale
 - SO₂ suppresses C and OH effects (Young)
- How affect depth of internal oxidation?
 - Young also reported SiO₂ formation with SO₂
- Is this a lasting benefit?
 - only 500 h exposure

