SAND2018-3137C

Exceptional service in the national interest

Influence of CO₂ Purity on the Corrosion of Structural Alloys for Supercritical CO₂ Power Cycles

Matt Walker^[1], E. Withey^[2]

Energy Innovation ^[1]; Materials Chemistry ^[2] Sandia National Laboratories (Livermore, California)

6th International Supercritical CO₂ Power Cycles Symposium Pittsburgh, PA March 28th 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Advanced nuclear reactor concepts aim for advances over existing LWRs

DOE Advanced Nuclear Reactor Program

Program Lead: ORNL

Advanced reactors are intended to provide advancements in the following areas:

- Sustainability
- Safety
- Reliability
- Economics
- Non-proliferation

Considering energy conversion systems for Sodium Fast Reactors

Sodium Fast Reactor Concept

Characteristics:

- Sodium coolant
- 550°C outlet temperature
- High thermal efficiency

Fast reactor concepts are important for meeting sustainability goals

- Efficient resource (fissile material) utilization and generation
- Waste minimization (consumption of LWR actinides)

Research program established to develop and integrate a Supercritical CO₂ Energy Conversion System in place of the Conventional Steam Rankine System

• Sandia is teaming with Argonne to develop this system

Distinct challenges exist with materials for sCO₂ EC Systems

Focus Areas for sCO_2 Materials Development

- Two areas identified where materials contributions are critical to the successful development of this technology :
 - **1.** Alloy Selection for sCO₂ EC Systems
 - T<550°C: SFR
 - T>550°C: HTGR and MSR
 - 2. Materials Support for sCO₂ System Development
 - Turbine Degradation
 - Bearing Foil Materials (coatings)
 - Systems for In-situ Measurement of Materials Corrosion
 - sCO₂/Polymer Interactions

Sandia National Laboratory 250 kW sCO2 RCBC

Informed decision making process used for selecting component alloys

10 MW SFR Energy Conversion System

Alloys recommendations made using available data – caveats exist

10 MW SFR Energy Conversion System Candidate Alloys

- Alloy Recommendations for SFR EC
 - Temperatures > 400°C: 347H, 316H, 316L
 - Temperatures < 400°C: G22, G91

- Caveats
 - Alloy costs calculated using alloy chemistry and market elemental prices
 - Only considers surface oxidation and not internal carburization
 - All corrosion data collected using RG CO₂ rather than IG CO₂

Evaluating the impact of CO₂ gas chemistry on alloy corrosion

<u>())</u>

Corrosion Experimental Overview

Allow		<u>Chemical Analysis (Wt %)</u>																		
Alloy	Fe	Cr	Ni	Mn	Со	Мо	Si	Al	В	С	Cu	Р	S	Ti	w	Nb	N	V	Zr	Та
F22	98.13	219	0.07	0.4	-	0.95	0.2	0.021	0.0001	0.1	0.1	0.008	0.011	0.002	I	0.001	-	0.004	-	-
F91	89.25	8.38	0.18	0.43	-	0.94	0.32	0.011	-	0.1	1	0.02	0.01	0.007	1	0.067	0.063	0.22	0.001	-
304H	70.54	18.16	8.08	1.39	0.32	0.4	0.44	1	-	0.049	0.51	0.032	0.0004	1	ł	1	0.081	-	-	-
316H	68.60	16.61	10.26	1.536	0.152	2.006	0.329	1	-	0.041	0.392	0.036	0.001	1	ł	0.005	0.0315	-	-	-
347H	68.73	17.24	9.32	1.83	0.45	0.38	0.66	1	-	0.06	0.51	0.028	0.019	1	ł	0.74	0.017	-	-	0.02
800H	46.70	20.56	30.6	0.54	0.03	-	0.32	0.52	1	0.07	0.03	0.12	0.0001	0.57	1	1	0.01	-	-	-
HR120	35.48	24.91	37	0.68	0.15	0.27	0.5	0.08	0.002	0.062	0.09	0.012	< 0.002	< 0.01	<0.1	0.6	0.163	-	-	-
617	0.76	22.63	53.2	0.02	12.33	9.38	0.15	1.15	0.002	0.06	0.05	-	0.001	0.27	1	-	-	-	-	-

CO₂ Grade		Gas Chemical Analysis										
	CO ₂ (%)	CO (ppm)	H ₂ (ppm)	N ₂ (ppm)	0, (ppm)	CH, (ppm)	H ₂ O (ppm)					
RG	> 99.999	0.012	0.005	1.070	0.040	0.153	< 0.02					
IG	> 99.980	< 0.010	0.040	35.370	11.110	0.430	0.53					

After the ferritic alloys, 316H is the most susceptible to corrosion in CO₂

Gas chemistry (RG vs IG CO₂) has very little influence on alloy corrosion

Statistical Analysis for Different Gas Chemistries

Statistical Analysis Summary of Alloy Weight Change Differences for RG and IG CO₂

	350)∘C	600°C			
Alloy	500 hrs	1000 hrs	500 hrs	1000 hrs		
F22	IG = RG	IG = RG	IG = RG	IG = RG		
F91	IG = RG	IG = RG	IG = RG	IG = RG		
304H	IG = RG	IG = RG	IG = RG	IG = RG		
316H	IG > RG	IG > RG	IG = RG	IG = RG		
347H	IG = RG	IG = RG	RG > IG	IG = RG		
300H	IG = RG	IG = RG	IG = RG	IG = RG		
HR120	IG = RG	IG = RG	IG = RG	IG = RG		
617	IG = RG	IG = RG	IG = RG	RG > IG		

RG and IG CO_2

omparing weight gain data for 617 at 600°C i RG and IG CO₂

Gas chemistry (RG vs IG CO₂) has very little influence on surface oxide

Alloy Specimen Oxide Microstructures

Valuable observations in comparing to results from other researchers

Comparison with Prior Results at 600°C

Developing a unique capability for sCO₂ energy conversion systems

In-situ Alloy Corrosion Monitoring

in-situ Carbon Dioxide Corrosion Monitoring

- Systems are currently being built where alloy selections are made with limited data
- Capability for real time monitoring of component alloy corrosion in these systems is extremely valuable:
 - Reduces risk for system developers
 - Provides the opportunity to piggyback learning for material behavior in these systems
- ER is a simple, robust technique that measures <u>E</u>lectrical <u>R</u>esistance across a metallic element
- As the element increases in resistance due to corrosion this is correlated to a loss in the element thickness

- Photo of 316L ER device with heat shield removed - Reference element is internal to the device

Validation of in-situ corrosion monitoring with alloy witness coupons

In-situ Alloy Corrosion Monitoring – Next Steps

- Run probes of 2 different alloys in two separate temperature ranges in CO₂
- Long duration tests up to 1500 hours
- Witness coupons (3) of each alloy included for extraction at 500 hour intervals (500hrs, 1000hrs, and 1500hrs)
- Lower T Candidates: 9Cr-1Mo (grade 91), 316, 304, 310, 347H
- Higher T Candidates: 800H, HR120, 617, 625, 230, 740H

Significant new understanding has been achieved for alloy corrosion in CO₂ gases

Summary and Overview of Future Work

• Concerns with Existing Data:

- Alloy corrosion data has predominantly been obtained using research grade CO₂, while the lower purity industrial grade CO₂ will be used in a real system
- There is very limited alloy corrosion data available at lower temperatures relevant for sodium fast reactor (SFR) energy conversion system applications
- Alloy corrosion investigations have primarily considered surface oxidation and not internal carburization
- Structural alloy corrosion has only been evaluated in terms of sample weight gain, rather than by the more useful metric of metal loss

Achievements through recent research:

- Long duration (1000-hour) corrosion data has been obtained for 8 alloys at two temperatures relevant to an SFR EC system (350°C and 600°C) in both RG and IG CO₂
- Statistical analysis of alloy weight change data indicates very little change in alloy corrosion behavior for these two temperatures between RG and IG gases
- Comparison of recent results to others at higher pressures indicate minimal influence of pressure on corrosion in CO₂
- A recent lab shakedown test has demonstrated significant potential for ER in-situ corrosion probes in CO₂ systems

Overview of Future Work:

- Complete analyses for alloy internal carburization using nanoindentation hardness techniques
- Complete analyses for alloy metal loss through chemical cleaning study (calculate alloy lifetimes)
- Evaluate/develop *in-situ* corrosion monitoring technology for sCO₂ EC systems

Acknowledgements

Jeff Chames Heidi Vega Andy Gardea Ken Stewart Josh Whaley

Brian Robinson (DOE) Sal Golub (DOE) Alan Kruizenga (Kairos Power) Gary Rochau Amanda Dodd

Questions?

Backup Slides

Developing a transformative energy conversion system

<u>())</u> 🚉 ...

Supercritical CO₂ (sCO₂) Energy Conversion Systems

(Rankine Cycle)

Table 2. Corrosion Sample Dimensions

Alloy	Diameter (in)	Thickness (in)		
F22	0.47	0.063		
F91	1.25	0.063		
304H	0.47	0.188		
316H	0.47	0.125		
347H	0.47	0.040		
800H	0.50	0.063		
HR120	0.47	0.063		
617	0.61	0.063		

Table 3. Chemical Analysis for CO₂ Gases

т, °С	CO. Crede		Gas Chemical Analysis									
	CO ₂ Grade	CO ₂ (%)	CO (ppm)	H ₂ (ppm)	N ₂ (ppm)	O ₂ (ppm)	CH ₄ (ppm)	H₂O (ppm)				
600	RG	> 99.999	0.054	0.021	3.097	0.110	0.355	< 0.02				
350	RG	> 99.999	0.012	0.005	1.070	0.040	0.153	< 0.02				
600	IG	> 99.98	< 0.010	0.040	35.370	11.110	0.430	0.53				
350	IG	= 99.98</td <td>< 0.010</td> <td>0.040</td> <td>> 80</td> <td>> 60</td> <td>0.420</td> <td>0.81</td>	< 0.010	0.040	> 80	> 60	0.420	0.81				

Figure 15. Polished cross-sections of each alloy in IG and RG $\rm CO_2$ at 350°C for 1000h

Figure 16. Polished cross-sections of each alloy in IG and RG $\rm CO_2$ at 600°C for 1000h

Identifying Candidate Alloys

		Code Qualifications							
			<u>ASME B31.1</u>	BPVC		Material			
Alloy	<u>Category</u>	(Y, N)		May T		May T	Cost		
			Category	(°C)	Category	(°C)	(\$/Lb)		
API 5L	Carbon Steel	Y	Seamless Pipe and Tube (X65)	427	<u>Surregory</u>		\$0.91		
Grade 22	Ferritic	Y	Seamless Pipe and Tube (P22, T22, FP22)	593			\$1.04		
Grade 91	Ferritic	Y	Seamless Pipe and Tube (P91, T91)	649			\$1.30		
410	Ferritic	Y	Seamless Pipe and Tube (TP410)	371			\$1.23		
E-Brite	Ferritic	Y	Seamless Pipe and Tube (TPXM-27)	343			\$1.75		
304H	Austenitic	Y	Seamless Pipe and Tube (TP304H)	816			\$1.75		
310S	Austenitic	Ν					\$2.37		
310H	Austenitic	Y	Seamless Pipe and Tube (TP310H)	816			\$2.37		
316L	Austenitic	Y	Seamless Pipe and Tube (TP316L)	816			\$1.83		
316H	Austenitic	Y	Seamless Pipe and Tube (TP316H)	816			\$1.83		
316FR	Austenitic	N					\$1.83		
316LN	Austenitic	Ν					\$1.83		
316	Austenitic	Y	Seamless Pipe and Tube (TP316)	649			\$1.83		
347H	Austenitic	Y	Seamless Pipe and Tube (TP347H)	816			\$1.82		
347HFG	Austenitic	N					\$1.82		
AL-6XN	Super-Austenitic	Y	Seamless Pipe and Tube (N08367)	427			\$2.77		
800H	Super-Austenitic	Y	Seamless Pipe and Tube (N08367)	816			\$2.64		
600	Ni-Base Chromia-Forming	Y	Seamless Pipe and Tube (N06600)	649			\$4.18		
617	Ni-Base Chromia-Forming	Y	Seamless Pipe and Tube (N06617)	816			\$5.38		
625	Ni-Base Chromia-Forming	Y	Seamless Pipe and Tube (N06625)	649			\$5.60		
690	Ni-Base Chromia-Forming	Y			BPVC, Sec II, Part D	650	\$4.04		
230	Ni-Base Chromia-Forming	Y			BPVC, Sec II, Part D	900	\$5.86		
282	Ni-Base Chromia-Forming	N					\$5.17		
PE16	Ni-Base Chromia-Forming	Ν					\$3.43		
718	Ni-Base Chromia-Forming	Ν					\$5.29		
740	Ni-Base Chromia-Forming	N					\$6.27		
740H	Ni-Base Chromia-Forming	Y			BPVC, Code Case 2702-1	800	\$6.18		
HR120	Ni-Base Chromia-Forming	Y			BPVC, Sec II, Part D	900	\$4.01		
214	Ni-Base Alumina-Forming	Ν					\$4.17		
247	Ni-Base Alumina-Forming	N					\$9.06		

- ✓ Corrosion Data
- ✓ Code Qualified

Elements	Raw Material Price July 2016 (\$/Lb)
Nickel	\$4.65
Cobalt	\$11.67
Molybdenum	\$6.99
Copper	\$2.20
Niobium	\$34.00
Iron	\$0.90
Chromium	\$3.78
Tungsten	\$13.00
Titanium	\$1.15
Manganese	\$0.75
Hafnium	\$75.00
Tantalum	\$59.88
Vanadium	\$8.77
Aluminum	\$0.75

For 3 inch – Schedule 160 pipe

Alloy Cost to Satisfy Strength Requirements

Minimum wall thickness calculation (Equation 7 in B31.1-2014):

$$t_m = \frac{PD_o}{2(SE + Py)} + A$$

t_m: Minimum wall thickness (inches)

P: Internal pressure (ksi) - used 4.35ksi (30 Mpa)

D_o: Outer diameter (inches) - **used 4 inches**

S: Allowable stress given as function of temperature (ksi) - used values in code

E: Weld joint efficiencty - used 1 (assumed seamless pipe no welds)

y: used values from table 104.1.2

A: Additional thickness (corrosion allowance, etc.)

Cost of alloy per 1 ft length that satisfies the ASME code strength requirements:

$$Cost (\$) = \frac{\pi \times 12in \times [D_o^2 - (D_o - t_m)^2]}{1728 in^3/ft^3} \times \rho_{\text{alloy}} \times \text{Cost}_{\text{alloy}}$$

t_m: Minimum wall thickness (inches)

 ρ_{alloy} : density of alloy in units of lbs/ft³

 $\mathsf{Cost}_{\mathsf{alloy}}$: cost per lb of alloy based on raw material prices

Alloy Costs (\$/ft) to Satisfy Strength Requirements

Available Alloy Corrosion Data (400-750°C, RG sCO₂, 200-250 bar)

Approach for Comparing Alloy Corrosion Rates

Parabolic fit to Cao's (2012) experimental data for 800H at 650°C

Assuming parabolic oxidation kinetics, the parabolic rate constant (kp) can be calculated for each set of data

$$k_p = \frac{(\Delta m)^2}{2t}$$

Log kp values are used as a corrosion rate comparison between alloys

Unable to accurately relate this back to alloy thickness requirements, which would be preferred

Comparing Alloy Corrosion Rates (600 – 700°C)

Comparing Alloy Corrosion Rates (400 – 550°C)

Comparing Alloy Corrosion Rates (600 – 700°C)

400 to 550°C

Alloy	т (°С)	Pressure (bar)	log k _p ^A (g ² cm ⁻⁴ s ⁻¹)	Time range (hours)	log k _p ^B (g ² cm ⁻⁴ s ⁻¹)	Time range (hours)	Reference
G22	400	200			-13.8	0-500	Pint 2016 ^[13]
G22	500	200			-11.7	0-500	Pint 2016 ^[13]
G91	550	200			-11.6	0-1000	Lee 2014 ^[14]
G91	550	250			-11.5	0-310	Rouillard 2011 [15]
G91	400	200			-13.8	0-500	Pint 2016 ^[13]
G91	500	200			-12.1	0-500	Pint 2016 ^[13]
410	400	200	-13.0	0-2000			Furukawa 2010 ^[16]
410	500	200	-11.7	0-2000			Furukawa 2010 ^[16]
410	550	200	-11.5	0-2000			Furukawa 2010 ^[16]
410	400	200			-13.8	0-500	Pint 2016 ^[13]
410	500	200			-12.1	0-500	Pint 2016 ^[13]
310	550	200			-16.3	0-1000	Lee 2014 ^[14]
310	550	200			-14.9	0-250	Kim 2014 ^[17]
316H	550	200	-14.6	0-3000	-15.8	0-1000	Lee 2015 ^[18]
316H	550	200			-15.7	0-250	Kim 2014 ^[17]
316L	550	250			-15.2	0-310	Rouillard 2011 [15]
347H	550	200	-15.4	0-3000	-15.7	0-1000	Lee 2015 ^[18]
347H	550	200			-14.8	0-250	Kim 2014 ^[17]
347H	550	200	-15.7	0-1000			Mahaffey 2014 [19]
800H	550	200			-14.9	0-250	Kim 2014 ^[17]
800H	550	200			-16.3	0-1000	Lee 2014 ^[14]
800H	550	250			-15.1	0-310	Rouillard 2011 [15]
800H	550	200	-15.3	0-1000			Mahaffey 2014 ^[19]
617	550	200	-15.4	0-1000	-15.1	0-200	Dheeradhada 2015 ^[20]
625	550	200			-16.1	0-1000	Pint 2014 ^[21]
625	450	200	-15.8	200-1000	-17	0-200	Mahaffey 2015 ^[22]
625	550	200	-16.1	200-1000	-15.2	0-200	Mahaffey 2015 ^[22]
625	550	200			-16.1	0-1000	Lee 2014 ^[14]
230	450	200	-15.7	200-1000	-16.8	0-200	Mahaffey 2015 ^[22]
230	550	200	-14.9	0-1000	-15	0-200	Mahaffey 2015 ^[22]

log kp^A Derived by fitting through multiple points over the time range

 $\log kp^{B}$ Derived by fitting through a single point over the time range

Alloy	т (°с)	Pressure (bar)	log k _p ^A (g ² cm ⁻⁴ s ⁻¹)	Time range (hours)	log k _p ^B (g ² cm ⁻⁴ s ⁻¹)	Time range (hours)	Reference
G22	600	200			-10.7	0-500	Pint 2016 [13]
G91	600	200			-10.9	0-1000	Lee 2014 ^[14]
G91	650	200			-10.7	0-1000	Lee 2014 ^[14]
G91	650	207			-10.7	0-500	Tan 2011 [23]
G91	600	200			-11.5	0-500	Pint 2016 ^[13]
410	600	200	-11.0	0-2000			Furukawa 2010 [16]
410	600	200			-12.1	0-500	Pint 2016 [13]
304H	650	200			-13.1	0-500	Pint 2014 [21]
304H	700	200			-13.5	0-500	Pint 2014 [21]
304H	600	200			-14.0	0-500	Pint 2016 [13]
310	650	200	-14.3	0-2002	-14.7	0-502	Cao 2012 [24]
310	600	200			-15	0-1000	Lee 2014 ^[14]
310	650	200			-14.5	0-1000	Lee 2014 ^[14]
310	650	200			-13.9	0-250	Kim 2014 [17]
310	650	200	-14.4	0-2000			Firouzdor 2015 ^[25]
310H	650	200			-15.4	0-500	Pint 2014 [21]
310H	700	200			-14.2	0-500	Pint 2014 [21]
316	650	200	-12.7	0-3000	-15.1	0-502	Cao 2012 [24]
316	650	200	-12.9	0-998	-12.5	0-117	Olivares 2015 [26]
316	650	200	-12.7	0-3000			Firouzdor 2015 ^[25]
316H	600	200	-14	0-3000	-15	0-1000	Lee 2015 [18]
316H	650	200			-13.6	0-1000	Lee 2015 [18]
316H	650	200			-11.8	0-250	Kim 2014 [17]
316L	650	200			-12.4	0-194	Lim 2008 ^[27]
347H	600	200	-15.2	0-3000	-15.1	0-1000	Lee 2015 [18]
347H	650	200	-13.7	0-3000	-13.7	0-1000	Lee 2015 [18]
347H	650	200			-12.5	0-250	Kim 2014 [17]
347H	600	200			-14.0	0-500	Pint 2016 [13]
AI-6XN	650	207	-14.5	0-3000			Tan 2011 [23]
AI-6XN	650	200	-14.5	0-3000			Firouzdor 2013 [28]
800H	650	200			-13.9	0-250	Kim 2014 [17]
800H	600	200			-15.2	0-1000	Lee 2014 ^[14]
800H	650	200			-15.0	0-1000	Lee 2014 ^[14]
800H	650	207	-15.0	0-3000			Tan 2011 [23]
800H	650	200	-14.7	0-3000			Cao 2012 [24]
617	650	200			-15.3	0-500	Pint 2014 [21]
617	700	200			-14.9	0-500	Pint 2014 [21]
617	650	200	-14.8	200-1000	-13.9	0-200	Dheeradhada 2015 [20]
625	650	200	-14.9	0-2995	-14.6	0-492	Firouzdor 2013 [28]
625	650	200			-15.1	0-500	Pint 2014 [21]
625	700	200			-14.6	0-500	Pint 2014 [21]
625	600	200			-15.3	0-1000	Pint 2014 [21]
625	650	200			-14.6	0-1000	Pint 2014 [21]
625	650	200	-14.9	200-1000	-14.3	0-200	Mahaffey 2015 [22]
625	600	200			-15.3	0-1000	Lee 2014 ^[14]
625	650	200			-14.6	0-1000	Lee 2014 ^[14]
230	650	200	-15.5	492-2995	-14.5	0-492	Firouzdor 2013 [28]
230	650	200			-15.2	0-500	Pint 2014 [21]
230	700	200			-14.9	0-500	Pint 2014 [21]
230	650	200	-14.8	200-1000	-13.9	0-200	Mahaffey 2015 [22]
740	650	200			-15.4	0-500	Pint 2014 [21]
740	700	200			-14.6	0-500	Pint 2014 [21]

600 to 700°C

log kp ^A Derived by fitting through multiple points over the time range log kp ^B Derived by fitting through a single point over the time range

After the ferritic alloys, 316H is the most susceptible to corrosion in CO₂

Alloy Specimen Mass Changes

