

# Materials Evaluation and Corrosion Test Needs for a Direct-Fired sCO2 Oxy-Combustion Plant

Florent Bocher, Ph.D.
Tim Allison, Ph.D.
Southwest Research Institute

Bong Gun Shin **Hanwha Power Systems** 

SangMin Lee
Korea Electric Power Corporation

#### **Presentation Overview**



- Oxy-Combustion Application
- Overview of Materials
- Existing Test Data & Oxy-Combustion Variables of Interest
- Materials of Interest
  - 400 500 °C
  - 650 750 °C
- Future Test Needs and Recommendations

#### **Oxy-Combustion Plant Application**



- sCO2 oxy-combustion cycles have potential for
  - High thermal and plant efficiencies
  - Reduced CO2 emissions
- KEPCO Research Institute leading project to develop an oxycombustion gas turbine power plant
  - Minimize development risk with maximum turbine inlet conditions of 750 °C and 300 bara.
  - Hanwha Power Systems (turbomachinery)
  - Southwest Research Institute (ox-combustor)
  - Other academic Institutions in Korea and U.S.

### What's an Oxy-Combustion sCO<sub>2</sub> Cycle?





Closed Loop Composition is Affected by Air Separation, Combustion, and Cleanup

#### **Oxy-Combustor Material Needs**



- Combustor pressure vessel at process temperature
- Injector, liner cooled by process but at higher temperatures, lower stress
- $400 500 \,^{\circ}\text{C}$ • Two temperature ranges identified : •  $650 - 750 \,^{\circ}\text{C}$



### Why Focus on Corrosion?



- The majority of metal alloys will corrode.
- Corrosion affects every industry: Infrastructure, Utilities, Transportation, Production & Manufacturing, Government
- Engineering design usually increase corrosion issues.
- Corrosion is **expensive**: estimated between B\$575 (3.1% GDP) to T\$1.1 (6% GDP).

### Materials Deterioration in sCO<sub>2</sub>



#### Corrosion:

- Reaction of metals with oxygen.
- Oxygen comes from:  $CO_2 = 0.5 O_2 + CO$ .
- Growth of oxide film layer.

#### Carburization:

- Cr reacts with C → chromium carbide.
- Carbon penetrate through grain boundary.
- Carburization leads to spalliation of oxide films.

#### **Materials of Interest**



- 5 families of materials:
  - MFSS: martensitic stainless steels (10%-30% Cr) and ferritic stainless steels (12%-17% Cr with 0.15 0.63% C)
  - ASS: austenitic stainless steels (16 to 30% chromium and 2 to 20% nickel).
  - Al SS: alumina oxide austenitic stainless steels.
  - CrNi: chromium nickel alloys.
  - AlNi: alumina oxide nickel alloys.

### **Experimental Methods Summary**



| Method             | Measure                                     | Pros                                                | Cons                                                                                                                               |
|--------------------|---------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Weight measurement | Oxide film growth                           | • Easy<br>• Cheap                                   | <ul> <li>No carburization/corrosion product differentiation.</li> <li>Spalliation and material loss affect measurement.</li> </ul> |
| Micro hardness     | Micro hardness Carburization                |                                                     | Coupled with SEM/EDS to confirm carburization                                                                                      |
| SEM/EDS            | Oxide film<br>morphology and<br>composition |                                                     |                                                                                                                                    |
| Tensile test       | mechanical<br>properties                    | Environmental effect<br>on mechanical<br>properties | Only after exposure                                                                                                                |
| GENERAL            |                                             |                                                     | Lack of in-situ (HTHP problem)                                                                                                     |

### **Effect of Temperature**



#### Temperature **7** = worsen corrosion, increase carburization

| Temperature (°C)       | 200 | 250 | 400 | 450 | F00 | FFO | CC0 | CEO | 700 | 750 | 900 | 050 | 000 |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Type of alloy          | 300 | 350 | 400 | 450 | 500 | 550 | 660 | 650 | 700 | 750 | 800 | 850 | 900 |
| Martensitic & Ferritic |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Austenitic             |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Alumina SS             |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Chromium Ni            |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Alumina Ni             |     |     |     |     |     |     |     |     |     |     |     |     |     |

Based on combination of mass gain, oxide thickness, presence of crack, carburization, etc...:

**Green:** acceptable

Red: avoid

Alumina alloys are not good at low temperature because the alumina oxide does not form fast enough.

## Contamination of sCO<sub>2</sub> with O<sub>2</sub>



- Contamination with O<sub>2</sub>, water, and combination of both.
  - $O_2$ : may be beneficial or detrimental.
  - Water: accelerates corrosion.
  - Combination: accelerates corrosion.





SCO2 MA Mahaffey, J., et al., 5th Symposium on sCO2 Power Cycles, , 2016, Paper #114.

### Contamination of sCO<sub>2</sub> with H<sub>2</sub>O



- Contamination with water accelerates corrosion.
- Impact of water on weight change in sCO<sub>2</sub> at 8 MPa, 40°C.



#### **Coating**



- Thermal barrier coating (TBC) for corrosion protection:
  - Diffusion bond coatings (Pt diffusion or simple or Pt-modified aluminide) with commercially vapor-deposited yttriastabilized zirconia (YSZ) top coatings.
  - High velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air-plasma sprayed YSZ top coatings.
- Data only at higher temperature (1150°C): failure after 2260 1 hr cycles.
- CO<sub>2</sub> and/or air contamination reduces the time to failure.
- Intrinsic damages: oxide growth, internal stresses leading to cracking and failure.
- Extrinsic damages: erosion, local damages due to impact or particles melting, diffusing, and hardening the top coat leading to potential failure.

# Chosen Materials – <u>400-500°C</u> Combustor Inlet & Pressure Vessel



| Trade Name      | UNS    | Standard<br>Specification        | Notes                                 | Max Temperatu<br>Limit [°C] (BPV<br>Code Section) | Allowable Stress at 500°C [MPa] |
|-----------------|--------|----------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------|
| Gr91            | K90901 | ASTM A387<br>Grade 91<br>Class 2 | Reference. Most commonly tested MFSS. | 649 (VIII-2)                                      | 204                             |
| 800H            | N08800 | ASTM B407                        |                                       | 816 (VIII-2)                                      | 138                             |
| 310             | S31000 | ASTM A965                        |                                       | 816 (VIII-2)                                      | 116                             |
| 347H/347HF<br>G | S34709 | ASTM A965                        |                                       | 816 (VIII-2)                                      | 125                             |

# Alternative Materials – <u>400-500°C</u> Combustor Inlet & Pressure Vessel



| Trade Name   | UNS    | Standard<br>Specification | Max Temperature Limit [°C] (BPV Code Section) | Allowable<br>Stress at 500°C<br>[MPa] |
|--------------|--------|---------------------------|-----------------------------------------------|---------------------------------------|
| 625          | N06625 | ASTM B443                 | 593 (I) or 649 (VIII-1)                       | 192                                   |
| HK40         | J94204 | ASTM A351                 | -                                             | -                                     |
| HK50         | J94224 | ASTM A297                 | -                                             | -                                     |
| 310HCbN/HR3C | S31042 | ASTM A959                 | 732 (I)                                       | 117-158                               |
| NF709        | S31025 | ASTM A213                 | -                                             | -                                     |
| HR120        | N08120 | ASTM B515                 | 899 (VIII-1)                                  | 113-153                               |

# **Chosen Materials – <u>650-750°C</u> Combustor Exit & Liner**



| Trade<br>Name | UNS    | Standard<br>Specs | Max Temperature Limit [°C] (BPV Code Section) | Allowable<br>Stress at<br>500°C<br>[MPa] | Yield<br>Strength at<br>750-760°C<br>[MPa] | Creep Rupture Strength at 750°C [MPa] (hr) |
|---------------|--------|-------------------|-----------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|
| 740H          | N07740 | ASTM B983         | 800 (I)                                       | 84.1                                     | 596                                        | 200 10k)                                   |
| 282           | N07208 | ASTM<br>B637-12   | 800 (est.)                                    | 105 (est.)                               | 612                                        | 186 (10k)                                  |
| 230           | N06230 | ASTM<br>B572-06   | 982 (VIII-1)                                  | 50.8                                     | 323                                        | 91-98 (10k)                                |

# Alternative Materials – <u>650-750°C</u> Combustor Exit & Liner



| Trade<br>Name | UNS    | Standard<br>Specs | Max Temperature Limit [°C] (BPV Code Section) | Allowable<br>Stress at<br>500°C [MPa] | Yield<br>Strength at<br>750-760°C<br>[MPa] | Creep<br>Rupture<br>Strength at<br>750°C [MPa]<br>(hr) |
|---------------|--------|-------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Waspaloy      | N07001 | ASTM B637         | -                                             | -                                     | 706                                        | 290 (1k)                                               |
| Udimet<br>720 | N07720 | n/a               | -                                             | -                                     | 770                                        | 480 1k)                                                |
| Rene 41       | N07041 | SAE AS7469B       | -                                             |                                       | 938                                        | 276 (1k)                                               |
| 617           | N06617 | ASTM B167         | 982 (VIII-1)                                  | 50.4                                  | 072                                        | 140 (1k)                                               |
| MA 754        | N07754 | n/a               | -                                             |                                       | 275                                        | -                                                      |
| Hastelloy X   | N06002 | ASTM B572-06      | 482 (VIII-2)                                  | -                                     | 218                                        | 107 (1k)                                               |

# Proposed Materials: Existing Data in sCO<sub>2</sub>, constant pressure.



- Data adjust to mass gain in µg/(cm²·hr) because not all tests are the same duration.
- Increase in mass gain with increase in temperature at 20 MPa.





References:

Cao, G., et al., Corrosion Science, 60, 2012

Jelinek, J.J., et al., NACE Paper C2012-1428

**Lee, H.J., et al.,** 4<sup>th</sup> Symposium on sCO2 Power Cycles, 2014, Paper #32.

Lee, H.J., et al., Corrosion Science, 99, 2015

**Mahaffey, J., et al.,** 5th Symposium on sCO2 Power Cycles, , 2016, Paper #114.

Pint, B.A., Keiser, J.R., 4th Symposium on sCO2 Power Cycles, , 2014, Paper #61

**Pint, B.A., Keiser, J.R.,** JOM, 11, 2015

**Pint, B.A., et al.,** NACE Paper C2016-7747

**Pint, B.A., et al.** 5th Symposium on sCO2 Power Cycles, , 2016, Paper #56.

**SCO2 MATERIALS FOR OXY-COMBUSTION** 

# Proposed Materials: Existing Data in sCO<sub>2</sub>, constant temperature.



- No visible trend of mass gain with increase in pressure at 750C.
- High temperature materials had lower mass gain than low temperature materials.



#### **References:**

**Mahaffey, J., et al.,** 5th Symposium on sCO2 Power Cycles, , 2016, Paper #114.

**Pint, B.A., Keiser, J.R.,** 4th Symposium on sCO2 Power Cycles, , 2014, Paper #61

**Pint, B.A., Keiser, J.R.,** JOM, 11, 2015

**Pint, B.A., et al.,** NACE Paper C2016-7747

**Pint, B.A., et al.** 5th Symposium on sCO2 Power Cycles, , 2016, Paper #56.

#### **Test Plan – Variables of Interest**



- <u>Temperature</u>: low (combustor inlet) and high (high temperature)
- Pressure: high pressure based on design
- Contamination  $(O_2, H_2O)$ :  $CO_2, H_2O$ , and  $O_2$  mixture matching predicted composition at combustor inlet (low temperature) and exit (high temperature).
- Welding: potential negative impact on the corrosion behavior of chromium-containing alloys

20

#### **Test Plan – Variables of Interest**



- <u>Stress corrosion cracking</u>: corrosion combined with stress can lead to early mechanical failure.
- Galvanic corrosion: corrosion may worsen when dissimilar materials are in contact.
- <u>Coating</u>: testing bare and coating materials vapor deposited YSZ, and air-plasma sprayed YSZ.





21

#### **Test Plan**



- The recommended tests in O<sub>2</sub>/H<sub>2</sub>O/CO<sub>2</sub> are:
  - High Temp Weight Gain with Tensile Test
  - High Temp C-Ring/U bend
  - Low Temp Weight Gain with Tensile Test
  - High Temp Welding
  - Low Temp C-Ring/U bend
  - Micro hardness
- Statistic: 5 specimens for each test.
- Combine all low temperature and all high temperature.