

University Panel Additive Manufacturing of sCO₂ Heat ExchangersOpportunities and Challenges

Vinod Narayanan, Professor, University of California, Davis

Contributors:

Anthony Rollett, Professor, Carnegie Mellon University Erfan Rasouli, Post-Doctoral Scholar, UC Davis Samikshya Subedi, Graduate Student, CMU Colt Montgomery, Graduate Student, CMU

Acknowledgements:

grant # DE-FE0024064

grant # N00014-16-1-2027

Background-sCO₂ indirect cycle

RCBC efficiency as a function of microchannel recuperator effectiveness

sCO₂ Recuperators

- High cycle efficiency achieved only through heat recuperation
- HT & LT recuperators account for ~20% of RCBC system cost
- Design constraints/ challenges
 - High temperatures on the hot side (500 600 C)
 - High pressures (>200 bar)
 - Large pressure differential between hot and cold sides
 - Low approach temperatures between fluid streams
 - Corrosion
 - Creep and fatigue

Cast metal heat exchangers (Sandia, Carlson et al. 2014)

PCHE core (Heatric; accessed 03/2018)

Figure 1 Sketch of the wavy-fin heat transfer surface and the

Folded wavy fin HX; Fourspring et al. (2014)- Bechtel Marine and Brayton Energy

Primary heat exchanger

- Solar- concentrated sunlight-sCO₂
- Fossil (indirect)- combustion gases-sCO₂
- Nuclear- sodium-sCO₂
- Waste heat- waste heat flue gas-sCO₂
- PHX accounts for ~20-25% of the system cost; typically finned tube designs for waste heat recovery

Opportunities exist to increase the effectiveness of the PHX for multiple heat sources

Constraints:

- Low pressure drop on the hot side (waste heat, fossil)
- Cyclic fatigue
- Creep
- Integrity of braze and weld joints

Additive Manufacturing for sCO₂ HXs

Advantages

- "Monolithic"- No weld/braze joints
- Unique designs possible (with limitations imposed by the AM process)
- Not restricted to limitations imposed by diffusion bonding
- Not restricted by the limitations imposed by materials (subject to powder availability)
- Rapid customizable solutions
- Modular designs lend to scalability

Fertile space for University/National lab researchers-

Relatively low TRL level – lots of basic questions to be answered; multidisciplinary area- materials science, advanced manufacturing, thermal science, computational sciences

Additive Manufacturing of sCO₂ HXs- Issues/Questions

- Surface roughness (pressure drop concerns)
- Feature sizes (example of PCHE)
- Powder removal strategies
- AM process parameters
- Microstructure and mechanical properties (including relation to process parameters)
- Scale (tens of kW possible- what about larger?)
- Cost
- Fatigue and creep?

sCO₂ AM HX work by the group- Microstructure

Fraction of Σ3
boundaries*

Top 0.49%

Pillars 0.49%

Bottom 0.2%

*related to fatigue crack initiation

As fabricated Post heat treatment

968 °C for 1.5 h, aged (718 °C for 8 h to 612 °C for 8 h and then cooled below 150 °C)

Pre- vs post- heat treatment:

- Grain size increased from 4-8 μm
- Orientation gradients reduced; however still present => partial to no recrystallization
- Hardness increased to wrought In718 levels

sCO2 AM HX work (cont.)- Bulk region porosity vs process parameters

sCO2 AM HX work (cont.)- Micropillar porosity vs process parameters

	Vol.Scanned (mm3)		Pore diameter range (µm)	Avg. equivalent diameter (μm)	
P1V1	0.143	203	54.6-1.6	7.2	0.34
P2V2	0.143	205	49.2-1.6	6.19	0.17
P3V3	0.143	204	46.4-1.6	5.33	0.12

sCO₂ AM Primary Heat Exchanger

Patent Pending

Presentation on Primary HX for waste heat applications- Tomorrow 8-9:30 HX 1 Track B session- Paper 38 for more information

Patent pending

Summary

- AM has potential for sCO₂ HXs
- Lots of basic and applied research in multi-disciplinary areas needed to advance AM for sCO₂ cycles => Opportunities for university researchers
- Cost comparisons need to be performed vs other methods in conjunction with technical advances
- Scale-up needs to be addressed