Research-to-Power: The sCO₂ Future

Bruce Pint
Group Leader, Corrosion Science
Materials Science and Technology Division
Oak Ridge National Laboratory

March 2018

ORNL is managed by UT-Battelle for the US Department of Energy

ORNL has supported the development of new energy technologies for 75 years

- ORNL has a broad range of expertise
- Engineering divisions for design, development and analysis
- Computation directorate for modeling and simulation
- Materials division can address:
 - Material and coating selection
 - Material and coating performance
 - New material development
 - ~10 R&D 100 awards for alloy development
 - 1982 for Grade 91, first creep-strength enhanced ferritic steel
 - 2017 two awards for two new high strength Al alloys
 - Participating in new DOE Fossil Energy Extreme Materials team

Current sCO₂ relevant projects at ORNL

- ASME Code Case for Haynes 282 (Fossil)
 - Cost-shared by Haynes International
- Lifetime modeling for CSP sCO₂ power block at 700°-800°C (Solar)
 - Completing 3rd and final year of project in 2018
- Corrosion issues in direct-fired sCO₂ cycles (Fossil)
- Design and fabrication of a novel sCO₂ heat exchanger (Fossil)
 - New project using additive manufacturing (AM)

ASME code case is ~70% complete (~370,000 h) Finish in Spring 2019 (began April 2015)

Shingledecker ~2011

Precipitation-strengthened Ni-base alloys 282 and 740H advantageous above 700°C

Several laboratory tests for studying 750°C CO₂ corrosion

1. Automated Cyclic Rigs (1 bar)

Relevant to solar duty cycle

2. 3-zone tube furnaces (1 bar)

3. 282 autoclave (300 bar)

4. "Keiser" rig (1-43 bar)

5 2018 sCO₂ panel discussion

Lifetime modeling for 100,000 h CSP sCO₂ power block

Square Root Time (√h)

Complexity of direct-fired environment: sCO₂: dual oxidant environment (O, C) Direct-firing: possibly 4 oxidants: (O, C, OH, S)

Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich)

Thin reaction products make characterization a challenge

- Multi-oxidant environments
 - Fundamental knowledge
- High pressure
- Thin-reaction products difficult to:
 - Identify phase composition
 - Quantify porosity
 - Detect C and S ingress
- Requires high resolution techniques
 - Limited sampling area

625: Ni-22Cr-9Mo-4Nb-4Fe-0.1Al-0.2Ti

Additive manufacturing is an ORNL focus area

- Current project in conjunction with NETL and Ames Lab.
- Phase 1: designing a novel heat exchanger
- Phase 2: trial builds and evaluations
- PI: Adrian Sabau

Example of a complex 282 mesh structure fabricated by electron beam melting

What has not been explored is the creep performance of thin-walled components

HR230 (NiCrW) is sensitive to grain size, which makes the creep resistance of foils much less than thicker plate/tube

Erosion (by fluid or particles?) not going to be investigated in autoclaves

From Fleming et al. Sandia National Laboratory report, 2014

ORNL will support the development of sCO₂ technology

- Engineering: design, analysis and development
- Computation: modeling and simulation
- Materials: selection, performance, new alloy development
 - Corrosion: nothing exciting is good news

Fantastic new failure mechanisms can derail new technologies

Unique Expertise for Challenging Materials

- Carbon Fiber and Composites
- Light Weight Metals
- High Temp and Refractory Metals
- Single Crystal, Functional Materials
- Ceramics
- Corrosion / Oxidation
- Joining
- Advanced Processing
- Energy Storage
- Mechanics
- Alloy design
- Characterization & Evaluation
- Theory & Computation

ORNL Legacy of Alloy Development - Alloy & Processing R&D 100 Awards

- 1982 R&D 100 Award "Super 9Cr-1Mo Steel Alloys"
- 1990 R&D 100 Award "ORNL HT-UPS 'Lean' Austenitic Stainless Steels"
- 2003 R&D 100 Award "CF8C-Plus New Cast Stainless Steel for High-Temperature Performance"
- 2006 R&D 100 Award "TMA 6301 and TMA 4701: Heat-Resistant Alloys" (Muralidharan ORNL lead)
- 2009 R&D 100 Award "AFA: Alumina-Forming Austenitic Stainless Steels" (Pint team member)
- 2011 R & D 100 Award "New Stainless Steel Alloy Tooling For High Temperature Presses that Form Aircraft Components"
- 2012 R & D 100 Award "Asymmetric Rolling Mill: A Novel Route for Processing Sheet and Plate"
- 2012 R & D Award "LRF-501 Low-Cost Plasma Processing System for Research and Pilot Production"

Opportunity: use ORNL computational methodology to develop new alloys to enable higher performance CSP systems

ORNL is Developing Novel Technologies for CO₂ Separation, Capture and Utilization

Organic membranes with unprecedented high CO₂ permeability

- Initial funding by LDRD program.
 Current funding by DOE's
 Technology Commercialization
 Fund.
- Partnership with MTR Inc. for pilotscale tests. Potential to achieve \$20/ton of CO₂

Aqueous guanidine sorbent scrubs CO₂ from air

- Aqueous guanidine sorbent binds CO₂ as insoluble crystalline carbonate salt
- CO₂ can be released at 80-120°C to regenerate guanidine ligand.
- Currently funded by DOE's Technology Commercialization Fund.

Carbon Nanospikes for Conversion of CO₂ to Ethanol via Electrocatalysis

- Laboratory Scale Demonstration
- 63% Faradaic efficiency
- 84% Selectivity for CO₂
- 22% Energy Efficiency
- Initial work funded by DOE's OS.
 Current funding by DOE-FE- CO₂
 Utilization Program.

15 2018 sCO₂ panel discussion

New SLM (SLM-Opt) Build For Extensive HX Characterization

- 35h, ~2000 layers
- 65mm tall
- Rectangular blocks to study properties anisotropy
- Thin wall effect
- Machine available for 2 weeks for process optimization

Fabrication of 20-30 EBM HX Specimens For Tensile, Creep and Fatigue Testing

- 27h, 1240 layers, ~65mm
- Small builds first to optimize parameters based on 718 & HX previous work
- Similar build parameters + preheat temperature
- Study the effect of post annealing and Hip'ing

5mm

