

Concentrating Solar Thermal Power Program Overview

Dr. Avi Shultz, CSP Program Manager Supercritical CO₂ Power Cycles Symposium March 28, 2018

energy.gov/solar-office

CSP with Storage is Solar Energy On-Demand

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

CSP is Deployed Worldwide

4.8 GW CSP deployed globally

1.8 GW CSP deployed in the U.S.

0.4 GW CSP deployed in the U.S. with storage

Since 2016 CSP's share of electricity generation:

- 1% of California
- 2% of Spain

CSP: Flexible Designs for an Evolving Grid

'Peaker' (≤6 hours of storage)

'Intermediate' (9 hours of storage)

'Baseload' (≥12 hours of storage)

By choosing the size of the solar field and thermal energy storage, the same CSP technology can be configured to meet evolving demands of the future grid

2030 Levelized Cost of Electricity Targets

CSP Program Technical Targets

Collector Field

- Optical Physics
- Structural design and dynamics
- Manufacturing and automation
- Sensors and control

Receivers

- Optical properties
- Coatings
- · High temperature materials
- Chemistry
- · Heat Transfer, Fluid Mechanics

TES and HTF

- Chemistry
- High temperature materials
- Materials Science
- Heat Transfer, Fluid Mechanics

Power Block

- High temperature materials
- Turbomachinery
- · Manufacturing and automation
- Sensors and control

CSP Program Technical Targets

A Pathway to 5 Cents per KWh for Baseload CSP

Pathways to Achieving 2030 SunShot Goals

*Baseload power plant is defined as a CSP plant with greater than or equal to 12 hours of storage

Pathways to Achieving SunShot 2030 Goals

All lines represent 10¢/kWh LCOE in a typical Southwestern U.S. climate

*Peaker power plant is defined as a CSP plant with less than 6 hours of storage

Gen3 CSP: Raising the Temperature of Solar Thermal Systems

$$\eta = 1 - \frac{T_C}{T_H}$$

Thermal Pathway	Primary Challenges
Liquids	Reliable corrosion management with advanced molten salts
Solids	High-efficiency transfer of heat in and out of particles
Gas	Integrating low-density gases with cost- effective thermal energy storage

GEN3 SYSTEM INNOVATION

CONCENTRATED STORAGE HEAT POWER CYCLE

Generation 3 Concentrating Solar Power Systems Funding Opportunity

- Total federal funds available: \$62,000,000
- Full Applications were received in January, 2018
- Selections expected to be announced in May of 2018

SETO sCO₂ Power Cycle Portfolio by Category

CATEGORY	PROJECT TITLE	PRIME
Turbomachinery	Compression System Design and Testing for sCO ₂ CSP Operation	GE
	Development of an Integrally-Geared sCO ₂ Compander	SwRI
	Development of High Efficiency Expander and 1 MW Test Loop	SwRI
	Physics-Based Reliability Models for sc-CO ₂ Turbomachinery Components	GE
Materials	Lifetime Model Development for Supercritical CO ₂ CSP Systems	ORNL
	sCO ₂ Corrosion and Compatibility with Materials	UW-Madison
Other Components	Development and Testing of a Switched-Bed Regenerator	UW-Madison
	sCO ₂ Power Cycle with Integrated Thermochemical Energy Storage	Echogen Power Systems
Technoeconomics	Cycle Modeling, Integration with CSP, and Technoeconomics	NREL
Primary Heat Exchanger	High Flux Microchannel Direct sCO ₂ Receiver	Oregon State
	High-Temperature Particle Heat Exchanger for sCO ₂ Power Cycles	SNL
	Robust, Cost-Effective Molten Salt HXer for 800°C Operation with sCO ₂	Purdue
	Solar Receiver with Integrated Thermal Storage for sCO ₂	Brayton Energy

SETO sCO₂ Power Cycle Portfolio - Turbomachinery

Development of High Efficiency Expander and 1 MW test loop – SunShot (2012)

Physics-Based Reliability Models for sc-CO2
Turbomachinery Components— PREDICTS (2013)

Development of an Integrally-Geared sCO₂ Compander – CSP: APOLLO (2015)

Compression System Design and Testing for sCO₂ CSP Operation— CSP: APOLLO (2015)

SETO sCO₂ Power Cycle Portfolio – Corrosion and Components

Lifetime Model Development for Supercritical CO2 CSP Systems – SuNLaMP (2015)

sCO2 corrosion and compatibility with materials – various awards

Development and testing of a switched-bed regenerator – CSP: APOLLO (2015)

sCO₂ Power Cycle with Integrated Thermochemical Energy Storage – Tech-to-Market 3 (2017)

Cycle modeling, integration with CSP, and technoeconomics – SuNLaMP (2015)

SETO sCO₂ Power Cycle Portfolio – Primary Heat Exchanger

High-Temperature Particle Heat Exchanger for sCO2 Power Cycles – SuNLaMP (2015)

Robust, Cost-Effective Molten Salt HXer for 800 °C Operation with sCO₂ – CSP: APOLLO (2015)

High Flux Microchannel Direct sCO₂ Receiver – CSP: APOLLO (2015); SunShot (2012)

Solar Receiver with Integrated Thermal Storage for sCO2 – CSP: APOLLO (2015): SunShot (2012)

Direct sCO₂ Receiver Development – LPDP (2012)

Optimizing the Supercritical CO₂ Brayton Cycle for Concentrating Solar Power Application

Rajgopal Vijaykumar, Matthew L. Bauer, Mark Lausten, and Abraham M. Shultz

950 L'Enfant Plaza Washington D.C. 20024 United States Department of Energy

Questions?

Avi Shultz

avi.shultz@ee.doe.gov Program Manager (Acting), CSP

energy.gov/solar-office

CSP Program Technical Targets

Collector Field

- Optical Physics
- Structural design and dynamics
- Manufacturing and automation
- Sensors and control

Receivers

- Optical properties
- Coatings
- · High temperature materials
- Chemistry
- · Heat Transfer, Fluid Mechanics

TES and HTF

- Chemistry
- High temperature materials
- Materials Science
- Heat Transfer, Fluid Mechanics

Power Block

- High temperature materials
- Turbomachinery
- · Manufacturing and automation
- Sensors and control

Next Generation CSP will Leverage Next Generation Power Cycles

Nuclear Energy
Nuclear Source

SCO₂
Team Challenges

» Turbomachinery

» Advanced Recuperators

» Materials Development

» Sensors & Controls

» Systems Integration
and Modeling

Fossil Energy
Direct-fire

Renewable Power
Concentrating Solar

Supercritical CO₂ is a dense, compressible fluid:

- Compact turbomachinery
- Good compatibility with dry cooling
- Fewer loss mechanisms and parasitics

