

energy.gov/sunshot

Commissioning of a 1 MWe Supercritical CO₂ Test Loop

J. Jeffrey Moore, Ph.D. Stefan Cich **Meera Towler** Tim Allison, Ph.D. John Wade Southwest Research Institute (SwRI)

Doug Hofer, Ph.D. Jason Mortzheim General Electric

Project Objectives

- To develop a novel, high-efficiency supercritical CO₂ (sCO₂) hot-gas turbo-expander optimized for the highly transient solar power plant duty cycle profile
 - This sCO₂ turbo-expander design advances the state-of-the-art from a current Technology Readiness Level (TRL) 3 to TRL 6
- To optimize novel recuperator technology for sCO₂ applications to reduce their manufacturing costs
- The sCO₂ turbo-expander and heat exchanger will be tested in a 1-MWe sCO₂ test loop, fabricated to demonstrate the performance of components along with the overall optimized sCO₂ Brayton cycle
- The scalable sCO₂ turbo-expander and improved heat exchanger address and close two critical technology gaps required for an optimized concentrating solar power (CSP) sCO₂ plant and provide a major stepping stone on the pathway to achieving CSP at \$0.06/kW-hr levelized cost of electricity, increasing energy conversion efficiency to greater than 50%, and reducing total power block cost to below \$1200/kW installed

Sunshot Program Overview

Team: SwRI, GE, KAPL, and Thar Energy

Project: 5-year, \$10 million program to develop & test an expander & recuperator for sCO₂ power generation from CSP

Schedule: Expander, recuperator, and test loop design complete

System targets:

- 10 MWe net module size
- 50% net thermal efficiency

Expander targets:

~14 MW shaft power>700°C inlet temp

• >85% aero efficiency

Multi-stage axial

Motivation for sCO₂ Cycles over Steam

20 MW steam turbine

14 MW sCO₂ turbine

150 lb rotor7" rotor tip diameter27,000 rpm

Vapor properties at 25°C (77°F) condenser

Recompression sCO₂ Cycle

Simple sCO₂ Recuperated Cycle for Test Loop

Loop Operating Conditions

Component	T out, °C (°F)	P out, bar (psi)	Flow, kg/s (lb/s)	
Pump	29.22 (84.60)	255.0 (3698)	9.910 (21.85)	
Recuperator- Heat	470.0 (878.0)	252.3 (3659)		
Heater	715.0 (1319)	250.9 (3639)	8.410 (18.54)	
Expander	685.7 (1266)	86 (1247)		
Recuperator- Cool	79.58 (175.2)	84 (1218)	9.910 (21.85)	
PreCooler	10.00 (50.00)	83 (1204)	,	

Project Schedule

- Work has been divided into three phases that emulate development process from TRL3 to TRL6
- Phase I Turbomachinery, heat exchanger, and flow loop design (24 months)
- Phase II Component fabrication and test loop commissioning (33 months)
- Phase III Performance and endurance testing (6 months)

Nozzle Casing – Rough Machine

• Machining, welding, and heat treat complete

Turbine Inlet - Welding and Heat Treat Complete

- Welding and heat treat completed
- Final machining completed

Turbine Key Achievements

- Largest scale, highest temperature SCO2 expander developed to date
- Employs industrial bearings and seals which can be scaled to utility scale
- One-piece rotor manufacturing developed to eliminate blade to rotor attachment
- Shrouded blades maintain highest efficiency
- Rotordynamic design to accommodate high density gas and high speed
- Casting issues overcome with a fabricated case design

Task 2.3: Test Loop Hardware Acquisition and Installation

Overview of Burner/Blower, Heat Exchanger, and Exhaust Ducting in Relationship to the SunShot Turbine and Recuperator

Close-up of the Heat Exchanger with the Associated Support Structure, Spring Can Supports, Expansion Joints, etc.

40 MMBtu/hr (II.7 MW) Heater

	Recuperator Outlet/ Heater Inlet	Heater Outlet/ Turbine Inlet
Temperature	470°C	715°C
Pressure	251.9 bar	250.9 bar
Mass flow rate of CO ₂	8.410 kg/s	8.410 kg/s

Heater HX

- Staggered tube configuration
- Designed by SwRI
- Manufactured by Thar
- First Inconel 740H heat exchanger

Primary Heater

Overview of Burner/Blower, Heat Exchanger, and Exhaust Ducting in Relationship to the SunShot Turbine and Recuperator

Dayco Heater

Heat Exchanger with the Associated Support Structure, Spring Can Supports, Expansion Joints, etc.

Firing of Gas Heater

- Heater was test fired to 1000F
- Heater temperature control system tuned

Thar Recuperator Development

- Milestone: Delivery of 5-MWt compact recuperator and performance qualification testing to demonstrate that performance specifications are met.
- Completion Target Metrics:
 - Test unit size 50-kW scale up 100:1 for Phase 3.
 - Capacity (% of design) = Design goal is minimum of 80% of 35 MW/m³ (i.e., 27 MW/m³).
 - Pressure drop (% of design) < 1.5 times of bench-scale performance
 - Cost (% of design) < Goal is not more than 1.5 times \$50/kW (i.e., no more than \$75/kW)

Recuperator HX Operating Conditions

Low Pressure CO₂ (Hour-Glass)

- 9.910 kg/s
- T_{IN} = 567°C (1053°F)
- T_{OUT} = 80°C (175°F)
- P_{IN} = 86 Bar (1247 psi)
- ΔP = 1.4 Bar (20.3 psi)

High Pressure CO₂ (Tubes)

- 8.347 kg/s
- T_{IN} = 29°C (85°F)
- T_{OUT} = 470°C (878°F)
- P_{IN} = 255 Bar (3698 psi)
- ΔP = 1.4 Bar (20.3 psi)

Thar Recuperator Development

- The delta pressure across the HX was designed to meet the milestone of being less than 1.5 times the bench-scale performance.
- The capacity of the 20,000 micro-tube tube bundle is calculated at 89 MW/m³, exceeding the design goal of 35 MW/m³.
- The pressure vessel fabrication and tube bundle was completed and passed the hydro test and received an ASME stamp.
- QA/QC of the tube bundle indicated that there was to be a delay in the delivery of the recuperator. This lead to a decision point to install a backup recuperator that had been ordered. Thar continues reviewing all stages in micro-tube recuperator fabrication in light of lessons learned from the fabrication of the first generation SunShot

Recuperator Contingency Plan

- Issued PO to Vacuum Process Engineering (VPE) for Alternative Recuperator
- Printed Circuit Heat Exchanger (PCHE)
- Delivered in April, 2017
- Required piping rework

VPE Recuperator on Stand

Pump Commissioning Test

- Loop pressure checked
- Pump commissioning complete
- Pump spun at low speed

²²

Final Turbine Design

Turbine Assembly

- Assembly completed with no major issues
- All fits and seal clearances verified
- Rotor runout met specifications
- Axial end-play adjusted with shim packs
- Radial bearing clearances verified
- Thermal seal instrumentation added

Turbine Assembly Completed

- Turbine assembled and installed on test stand
- Connections made to turbine in this order:
 - Large piping
 - Small piping
 - Lube oil supply and drain
 - Instrumentation
- Dynamometer not installed for initial commissioning tests

Task 2.2: Turbo-Machinery Fabrication

Turbine Case Assembly

10 MW Frame Size SCO2 Turbine

Test Loop Components

²⁸ 28

Loop Pressurization

Commissioning Procedure

#	Test Name	Test Description	Dyno	Heater	Speed	TIT	TEP	Exit Criteria
S1	Slow roll, init. seal	Spin turbine up to 2,000 rpm and immediately shut	Impeller removed.	Off	5,000 rpm	47°C	80 bar	Observe all rotordynamics instrumentation
	break-in, and	down. Confirm that tachometer was triggering and				(or max pump		functioning properly.
	rotordyn. instrum.	proximity probes were functioning properly. Repeat				discharge)		
	check	spin up and shut down procedure with increasing						
		target speeds in approximately 1,000-2,000 rpm						
		increments up to 5,000 rpm. This will allow						
		abradable seals to safely cut-in during transients in						
		case there is rubbing.						
S2	•		Impeller removed.	Off	5,000 rpm	47°C	80 bar	Observe ESD and overspeed trip sequences
	trip check	switch to confirm its function. Set overspeed trip				(or max pump		are functioning properly.
		value to 4,000 rpm. Attempt to spin turbine up to				discharge)		
		5,000 rpm and confirm that the overspeed trip						
		functions properly.				-		
S3		,	Impeller removed.	Off	18,000 rpm	47°C	80 bar	Observe normal vibration within amplitude
	balance	shut down. This will allow abradable seals to safely				(or max pump		limits and without signs of rubbing across
		cut-in during transients in case there is rubbing.				discharge)		speed range. Confirm bearing and SFD
		Execute trim balancing as necessary to reduce						performance. Confirm rotordynamics model
		vibration levels below limit. Increase target speed						prediction of unbalance response without
		from 5,000 rpm in approximately 1,000-3,000 rpm						dyno impeller; tune model if necessary.
		increments up to 18,000 rpm. Capture coast down						
		Bode plot from maximum speed.						
S4	Cold test, limited	Operate up to 21,000 rpm. Achieve steady state	Impeller removed.	Off	21,000 rpm	47°C	80 bar	Successfully operate at 1 steady-state
	speed	conditions. Capture coast down Bode plot from			-	(or max pump		condition.
		maximum speed.				discharge)		
S5	Dyno impeller break	Spin turbine up to target speed and immediately	Impeller attached;	Off	12,000 rpm	47°C	80 bar	Observe normal vibration within amplitude
	in	shut down. Execute trim balancing as necessary to	adjust flow control		(or maximum	(or max pump		limits and without signs of rubbing across
		reduce vibration levels below limit. Increase target	valves for min power		power-limited	discharge)		speed range. Confirm rotordynamics model
		speed in approximately 1,000-3,000 rpm increments	(within safe operating		speed)			prediction of unbalance response with dyno
		up to maximum speed (power-limited without	range).					impeller; tune model if necessary.
		heating turbine flow). Capture coast down Bode						
		plot from maximum speed.				J		

Commissioning Procedure

S6	Warm test, limited speed	Operate up to 21,000 rpm (or maximum power- limited speed) with heater off. Fire heater to	Impeller attached; adjust dyno flow from	Fired	21,000 rpm	550°C	80 bar	Successfully operate at 5 steady-state conditions. Document transient and steady
		increase TIT to 150°C (rate < 5°C/min), verify thermal seal performance, and make appropriate adjustments to DGS cooling flow. Slowly increase	min to max (or within safe operating range) for 5 steady-state					state performance for all components in the loop. Document required DGS flow rates.
		TIT to 550°C (rate < 5°C/min), modify cooling flow as						
		necessary.						
		Obtain 5 steady-state operating points from min to						
		max dyno flow; adjust TIP to maintain speed, TIT, and TEP.						
S7	Warm test, full	This test may be a continuation of a successful	Impeller attached;	Fired	21,000 rpm	550°C	80 bar	Successfully operate at 5 steady-state
	speed	limited speed warm test without shutdown (if not,	adjust dyno flow from		(or maximum			conditions. Document transient and steady
		refer to previous procedures). Increase speed to 27,000 rpm. Achieve steady state conditions.	min to max (or within safe operating range)		power-limited			state performance for all components in the
		Obtain 5 steady-state operating points from min to	for 5 steady-state		speed)			loop.
		max dyno flow; adjust TIP to maintain speed, TIT,	points.					
		and TEP.						
S8	Hot test, full speed	This test may be a continuation of a successful <u>full</u>	Impeller attached;	Fired	27,000 rpm	715°C	80 bar	Successfully operate at 5 steady-state
		speed warm test without shutdown (if not, refer to	adjust dyno flow from					conditions. Document transient and steady
		previous procedures). Slowly increase TIT to 715°C	min to max (or within					state performance for all components in the
		(rate < 5°C/min). Achieve steady state conditions.	safe operating range)					loop.
		Obtain 5 steady-state operating points from min to	for 5 steady-state					
		max dyno flow; adjust TIP to maintain speed, TIT,	points.					
		and TEP.						
S 9	Normal shutdown	This test may be a continuation of a successful <u>full</u>	Impeller attached.	Fired	27,000 rpm	715°C	80 bar	Successfully shut down. Document transient
	from max TIT	<u>speed hot test</u> without shutdown (if not, refer to						performance for all components in the loop.
		previous procedures). Slowly decrease TIT to 200°C						
		(rate < 5°C/min). Turn off burner, but maintain air						
		blower flow. Reduce speed to 5,000 rpm. After						
		heater air exit temperature reaches 150°C, stop						
		turbine and pump.						

TIT = Turbine inlet temperature

TIP = Turbine inlet pressure

TEP = Turbine exhaust pressure

DGS = Dry gas seal

SFD = Squeeze film damper

ESD = Emergency shut down

Summary of Turbine Operating Limits

Measured Quantity	Limit	Action if Limit Exceeded
Synchronous (1x)	0.7 mil p-p (ISO 7919 Zone A)	Reduce speed or change load condition to try to
vibration factory		eliminate high vibration, or shut down. Evaluate
acceptance with		possible causes for high vibrations and correct (e.g.
proximity probes		trim balance)
Subsynchronous (<i>n</i> x,	0.18 mil p-p	Reduce speed or change load condition to try to
<i>n</i> <1) vibrations		eliminate subsynchronous vibration presence, or shut
measured with		down. Evaluate possible causes for subsynchronous
proximity probes		vibrations and correct, if possible, or justify setting
		higher limit.
Overall vibration	1.5	Alarm – Reduce speed or change load condition to try
Amplitude measured		to eliminate high vibration, or shut down. Evaluate
with proximity		possible causes for high vibrations and correct, if
probes		possible, or justify setting higher limit.
	1.8 mil p-p	Shut down – determine the cause for the high vibration
	Note: Based on experience chart.	and correct it or justify setting a higher limit.
Housing	0.25 in/s RMS velocity (factory	Reduce speed or change load condition to try to reduce
acceleration	acceptance).	acceleration amplitude, or shut down. Evaluate possible
measured with		causes for high acceleration amplitude and correct, if
accelerometers	100.07	possible, or justify setting higher limit.
Oil supply	130 °F	Evaluate lube oil cooler and reduce supply temperature
temperature		
Oil drain	50 °F above oil inlet temperature.	Shut down and determine the cause for the high oil
temperature		temperature rise and correct it or justify setting a higher
		limit.
DGS Casing	350 °F	Decrease turbine TIT or increase seal gas flow rate.
temperature	1.500	
DGS pressure	1500 psi	Decrease loop pressure.
Casing temperature?	1320 °F (715°C)	Reduce burner temperature
Casing temperature	670°C/hr, increasing	Turn down heater temperature or flow.
rate	670°C/hr, decreasing	Turn up heater temperature or flow.
Heater air	1700 °F	Reduce fuel flow rate.

Summary of Loop Operating Limits

Measured Quantity	Limit	Action if Limit Exceeded
Loop low pressure	1600 psi (PSV set point)	Vent loop
limit		
Loop high pressure	3950 psi (turbine case rating)	Vent loop
limit		
Turbine inlet	1320 °F	Reduce heater fuel flow
temperature limit		
Turbine exhaust	1270 °F	Reduce heater fuel flow
temperature limit		
Carbon steel pipe	600 °F (900# ANSI Flange Limit)	Reduce heater fuel flow
temperature limit		
Precooler inlet	500 °F	Reduce heater fuel flow
temperature limit		

Turbine Commissioning

Summary of Commissioning Activities

- Turbine assembly complete and installed in loop
- Recuperator installed including piping rework
- Piping cleanout and leak test
- Dry gas seal supply commissioning
- Lube oil commissioning
- Final instrumentation installation
- Control system checks
- Turbine was first spun Dec. 21, 2017
 - Break-in complete
 - Speed increased to 13,000 rpm traversing first critical speed
 - Vibrations very low (<0.25 mils p-p)
- Testing has continued through March, 2018.
- To date, turbine inlet conditions of 550C, 200 bar at 24,000 rpm have been achieved.

 35

Discussion

Questions???