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Background — Waste Heat Recovery Systems
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Fig. Cycle efficiency advantage for s-CO, cycles over
other candidates

Fig. Bottoming cycle using waste heat source
Waste heat (e.g. glass manufacturing, steel manufacturing, and gas turbine exhaust) can be utilized as a heat source for a
work-generating power cycle (bottoming cycle) to improve the overall thermal efficiency
Various systems applicable as waste heat recovery systems, including steam Rankine, ORC, and s-CO,

Supercritical CO, (s-CO,) bottoming cycle achieves high efficiency, mainly due to lowered compression work near the
critical point
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Background — S-CO, Cycle + Isothermal Compressor
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Fig. Minimizing compression work
through isothermal compressor

* S-CO, cycle has reduced compression work near the critical point

» Isothermal compression = compressing at constant temperature, through heat removal
* Using an isothermal compressor can minimize the compression work, up to 50% [4]
» Partial heating cycle has been known as one of the high-performing waste heat

recovery layouts [6]

* Isothermal compressor has been applied to partial heating cycle to show nearly 15%

improvement in overall net work generated [4]

* Lowering compressor outlet temperature is beneficial for waste heat recovery, since it
1s not optimized for net efficiency but for net work (more heat input the better)

[4] Heo, Jin Young, et al. "Thermodynamic study of supercritical CO, Brayton
I(AIST cycle using an isothermal compressor." Applied Energy 206 (2017): 1118-1130.
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Feasibility Study — Options
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Question: How to realize the isothermal compressor in s-CO, power cycles?

Type Multistage + intercooling Radial Axial
Cooling . . Internally-cooled Impeller and shroud .
method Series of intercoolers b (3] S Gosifing Stator blade cooling
Impellers
Diagram JIn_t_ercoolers
¢ ,/
- Adiabatic compression
followed by intercoolers | Novel concent - Cooled flow passes
- Realistic option for p through the impeller and | - Cooling done on the
.. - Developed by
realizing s-CO, shroud surfaces to rotor and stator blade
. Southwest Research
isothermal compressor . remove heat surfaces
o Institute and . . .
(e.g. commercialized by Dresser-Rand - Challenging cooling - Concept from Frontline
Comments MAN Turbo) heat flux levels due to Aerospace IsoCool™

- Large pressure drop
expected in between
intercoolers

- Cycle re-optimization
needed

- Removes heat of
compression
between each
impeller

- For CCS application

limited heat transfer
area

- Close to real isothermal
compression

- Larger heat transfer
area at each stage

- Axial compressor not
yet realized for s-CO,

Option 1

Option 2

Option 3
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Option 1: Multistage Compression with Intercooling
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Fig. S-CO, partial heating cycle layout
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Fig. T-s diagram (left) and isothermal compressor efficiency (right) for multistage
compression with intercooling

Practical compressor stage number = 2~10 due to pressure drop (dP) of
intercoolers and size

AT,,+ = 2°C for cases of stage number 5 2 will influence cycle

optimization results
Optimal stage number at given conditions is 5, providing 1;so—c = 85.8%
(vs. 89%)
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Option 2: Impeller Cooling - Conditions
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* CFD study conducted to evaluate the feasibility of the cooling method
* Assumptions: uses previous geometry from KAERI SCIEL compressor for preliminary study

* Adopted STAR-CCM+ software

Design parameters Values
Mass flow rate (kg/s) 32
RPM 70000
Inlet stagnation temperature (°C) 33
Inlet stagnation pressure (MPa) 7.8
Pressure ratio 1.8
Inlet diameter 23mm
Outlet diameter 46mm
Number of blades 16
Isentropic efficiency (%) 65
Compression process number 100

Table. Design parameters obtained from SCIEL
design conditions and isothermal compressor
methodology

* Used 3-D Reynolds-Averaged Navier-Stokes (RANS) simulation, and k — w SST turbulence model (used for turbomachinery

analysis)

* Created a property table for CO, from the NIST REFPROP database
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Option 2: Impeller Cooling - Methodology
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Initial design conditions:
Compressor inlet/outlet temperatures and pressures,

mass flow rate

Calculation of compressor geometry:
Obtain the general information of compressor

geometry under isothermal condition using reference
design or 1-D design software

Calculation of boundary profile and CFD
Analysis:

Obtain the boundary condition as a heat flux profile
q"' () , using the infinitesimal approach, with
respect to the compressor radius, and CFD analysis

N y

( )
Performance analysis using CFD results:

lim ¥, AP, - % (Tin) +2Ui—1(Tin)
n-oo

Niso = T o

(APL' = Px,i - Px—l)

v

Total Pressure (MPa}
5.9876
||

G.4995

90113

-8. 5232

..‘1’.03 50
7.5469

& NPNP



Option 2: Impeller Cooling — CFD Results
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Figs. Temperature and total pressure of SCIEL s-CO, compressor under adiabatic conditions
(top left and right) and constant temperature condition at hub and shroud surfaces (bottom left

and right)
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Converged for constant temperature thermal
boundary condition on shroud and hub (constant T
BC case)

Total inlet temperature has been raised to 38°C in
order to achieve better convergence for the results
Two sets of thermal BC provided to the reference
compressor: adiabatic (case 1), and constant
temperature for hub and shroud surfaces at 35°C
(case 2)

Discharge temperature is not lowered sufficiently:
47.9°C for the adiabatic case and 46.3°C for
constant T BC case

Total pressure increases at the impeller tip: 9.5MPa
for adiabatic case and 10.5MPa for constant T BC
case

Pressure and temperature fields change only locally
with constant temperature BC = not enough heat
removal due to high heat capacity of s-CO,
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Option 2: Impeller Cooling — Heat Flux Profile

Inlet diameter

« Fig. Geometry of SCIEL

impeller with dimensions labeled : e
P *  Under SCIEL compressor design conditions

for reference comparison + new design
parameters for isothermal compressor design
* Adopting the infinitesimal approach for the
calculation of heat removal
* Able to obtain the profile of work and heat
removed inside the isothermal compressor
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Option 2: Impeller Cooling — Heat Flux Profile

Infinitesimal area profile of compressor
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= - 0 o
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Option 3: Axial-type Compressor — Basic Design

—_ Design Parameters Values
/7" Rotor blades Compressor inlet total temperature (°C) 32
W Compressor inlet total pressure (MPa) 7.69
Total-to-total pressure ratio 2.6
NP RPM 3600
 Stator vanes Compressor mass flow rate (kg/s) 1915
Realizable cooling flux level (MW/m?) 5
T Figs. Schematic of axial compressor stator vane cooling Compression process number 50
concept from Frontline Aerospace IsoCool™ (left) and Isentropic efficiency (small stage efficiency) (%) | 89
diagram of rotor and stator vanes (right)

T Table. Design parameters at optimal point for recompression iso-
Turbomachinery Geometry Brayton MC main compressor from Wang (2005)

Outlet
| —
I * No real axial s-CO, compressor has been designed and tested
Inlet 2 g
] J— * Reference design values used for the s-CO, axial compressor from

b 2
=

(

[

ta
2

p'hub radius (m)

g 02 Wang (2005)
= ::: = Rotor  Using in-house KAIST-TMD code for 1-D meanline axial compressor
o m Stator design, a reference main compressor geometry information is obtained
oL, S e de o L » Surface area estimated from the provided geometry = axial-type s-
Axial length (m) CO, compressor can realize the surface cooling flux by the concept of
T Fig. Turbomachinery geometry for s-CO, axial compressor for stator vane cooling

reference recompression main compressor (red: rotor, blue: stator)
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Option 3: Axial-type Compressor — Heat Flux Profile
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(assuming fixed stator vane number for all stators)

* Heat flux values still remain high especially for front stators,
where the CO, is expected to be near the critical point (hence,
high ;)

* Axial compressor design allows the increase of surface area within
the stator, high vane number>80 may allow enough cooling

For realistic levels,
average heat flux = 7.4MW /m?
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Option 3: Axial-type Compressor — Realistic Isothermal Comp.
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Fig. T-s diagram explaining the thermodynamic pathway of Fig. T-s diagram comparing the realistic isothermal compression to the
realistic isothermal compression using the infinitesimal approach adiabatic compression under the given design conditions of Table 1

* Introducing realistic heat flux level at SMW/m?, realistic isothermal compression can be analyzed

» Calculating specific heat removed by applying heat flux and stator surface area, the results yield 6.4kJ/kg (compared to
64.8kJ/kg for perfect isothermal compression)

*  Niso—c results in 75.9% for realistic isothermal compression, compared to 74.7% for adiabatic compression, and 88.9% for
perfect isothermal compression
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Conclusions and Further Works

KAIST

Three possible concepts to realize the isothermal compressor are investigated: multistage compressor with intercooler,
radial-type compressor impeller cooling, and axial-type compressor with stator vane cooling.

Realistic concept of multistage compressor with intercooler is largely limited by pressure drop in the intercoolers and
stage number, but it would be one of the realistic ways to apply the isothermal compressor.

For the radial-type compressor impeller cooling concept, rough estimate directs towards unfeasible cooling flux levels
(several 100MW/m? range). Otherwise, constant temperature thermal boundary condition on the shroud and hub
surfaces would not induce sufficient temperature drop to produce isothermal condition.

Hence, axial-type compressor is instead recommended for investigation for larger heat transfer area.

Axial-type compressor with stator vane cooling concept is tested for conceptual study. Although high cooling flux
levels exist at the entrance stators, heat can be removed at realistic levels when the vane number>80 for all the
compressor stators.

Provided the realistic level of heat flux (1-5MW/m?), results of ‘realistic isothermal compression’ are calculated. ;g

results in 75.9% for realistic isothermal compression, compared to 74.7% for adiabatic compression, and 88.9% for
perfect isothermal compression.
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Option 1: Multistage Compression with Intercooling

Observations:

* Realistic dP value will not achieve high cycle efficiencies =2 performance is

Reference: 41.1%
41.3| (reference
recompression)

Y
S
e-]

Cycle net efficiency (%)

s
=
0

#+dP =30kPa| |

| 4dP = 50kPa

40.7! - - :

2 - 6 8 10
Stage number

Fig. Graph of optimized cycle net efficiency with respect
to stage number for three values of intercooler dP values

sensitive to intercooler dP

* Multiple local maxima appear as stage number is increased, global maxima

held at higher PR points

* Designing for 0 < dP < 30 and stage number>7 will bring efficiency gain
* Hence, concept of multistage compression with least intercooling dP is

desirable
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Fig. Graph of optimized cycle net efficiency with respect to
pressure ratio for three values of stage number (dP =0kPa)
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Fig. Graph of optimized cycle net efficiency with respect to
pressure ratio for three values of stage number (dP =50kPa)
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CO, T-s Diagram
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CO, ¢,-T Diagram
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R
Frontline Aerospace IsoCool™ Close-up
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